跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭志成
研究生(外文):Chih-Cheng Kuo
論文名稱:大氣電漿技術沉積二氧化矽薄膜之機械性質探討
論文名稱(外文):Mechanical Properties of Silicon Dioxide Film Deposited by Atmospheric Pressure Plasma Chemical Vapor Deposition
指導教授:張所鋐
指導教授(外文):Shuo-Hung Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:大氣電漿楊氏模數奈米壓痕二氧化矽薄膜退火處理
外文關鍵詞:Atmospheric pressure plasmaNano IndentationSiO2Anneal
相關次數:
  • 被引用被引用:4
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文係利用噴射式大氣電漿鍍膜技術,電漿氣體為氮氣並在電源以功率500 W、頻率20 kHz及室溫和一大氣壓力下產生電漿源。使用有機矽源的六甲基二矽氮烷(Hexamethyldisazane,HMDSN)當作沉積二氧化矽薄膜的前驅物。改變不同的前驅物流量、處理時間及基板溫度等實驗因子,經由奈米壓痕儀量測楊氏模數,來了解機械性質的變化。同時使用霍氏轉換紅外光譜儀(FTIR)、原子力顯微鏡(AFM)及掃描型電子顯微鏡(SEM)來分析影響機械性質改變的因素。
經大氣電漿所沉積的二氧化矽薄膜其機械性質改變會受到表面孔洞情形變化的影響。其楊氏模數的結果會隨著基板溫度增加而增加,但是會隨著前驅物流量及處理時間增加而減少。實驗中也發現在室溫下沉積的二氧化矽薄膜再經過退火處理會使得薄膜更加緻密,其楊氏模數也會隨之提升。在退火溫度為 800 ℃及退火時間為5小時,其楊氏模數相較於未經退火的40.2 GPa提升至54.7 GPa且最大平均深度(Rvm)改善約12 %左右。
Atmospheric pressure plasma jet (APPJ) chemical vapor deposition (CVD) technique is utilized in this paper. The jet operates by feeding nitrogen gas between two electrodes that driven by a 20 kHz frequency and 500 W power source at atmospheric pressure and near room temperature. The organic silicon source Hexamethyldisazane (HMDSN) was utilized as the precursor of silica films. With distinct experiment factors, such as the flow rate of precursor, deposition time and substrate temperature, we measure the mechanical properties via nano-indentation system. Moreover, the variation of the mechanical properties analyzed by Fourier-transform infrared spectrometer (FTIR), atomic force microscope (AFM) and scanning electron microscopy (SEM) were obtained that correlated with surface porosity.
The results presented that the Young’s modulus of silica films deposited by APPJ CVD increased with increases in the substrate temperature, however, decreased with increases in the active precursor concentration and deposition time. When the films were deposited near room temperature after annealing in air, these films exhibited denser structure and higher Young’s modulus. Comparing non-annealing with annealing at 800 ℃ in 5 hours, the Young’s modulus increased from 40.2 GPa to 54.7 GPa and average maximum depth (Rvm) modified more about 12 %.
中文摘要 i
英文摘要 ii
目錄 iv
圖例目錄 vi
表格目錄 ix

第一章 緒論 1
1.1 前言 1
1.1.1 薄膜製程 2
1.1.2 大氣電漿源 2
1.1.3 化學氣相沉積二氧化矽薄膜 6
1.2 研究動機與目標 10

第二章 文獻回顧 12
2.1 大氣電漿之基本特性 12
2.2 大氣電漿技術沉積二氧化矽薄膜 16
2.3奈米壓痕技術理論基礎 24
2.3.1 奈米壓痕技術 24
2.3.2 基材效應 31
2.3.3 薄膜楊氏模數和硬度值 32

第三章 實驗設備與架構 34
3.1 實驗架構與步驟 34
3.1.1 實驗架構 34
3.1.2 薄膜機械性質量測 36
3.1.3 常壓電漿設備系統 39
3.1.4 熱處理實驗 46
3.2實驗材料準備 48
3.2.1 試片準備 48
3.2.2 反應物單體準備 49
3.3實驗設備 51
3.3.1奈米壓痕量測儀 51
3.3.2原子力顯微鏡 53
3.3.3霍氏轉換紅外光譜儀 55
3.3.4 薄膜量測儀 56

第四章 實驗結果與歸納分析 57
4.1 實驗過程步驟 57
4.2 薄膜表面形貌及成膜速率分析 60
4.3 薄膜機械性質分析 71
4.4 薄膜鍵結型態FTIR分析 79
4-5 歸納分析 86

第五章 結論與未來展望 98
5.1 結論 98
5.2 未來展望 100

參考文獻 102
[1]吳敏文等, “電漿源原理與應用之介紹,” 物理雙月刊, 廿八卷二期, pp. 440-452, 2006年4月.
[2]A. Schutze, J. Y. Jeong, S. E. Babayan, J Park, G. S. Selwyn, R. F. Hicks, “The Atmospheric-Pressure Plasma Jet: A Review and Comparision to Other Plasma Sources”, IEEE Transactions on Plasma Science, Vol. 26, pp.1685-1694, 1998.
[3]Sergei E. Alexandrov, Michael L. Hitchman, “Chemical Vapor Deposition Enhanced by Atmospheric Pressure Non-thermal Non-equilibrium Plasmas”, Chemical Vapor Deposition, Vol. 11, pp. 457-468, 2005.
[4]http://web.mit.edu/6.777/www/matprops/
[5]莊達人, “VLSI 製程技術,” 高立出版社, 2006年6月.
[6]Zajickvoa, Bursikova and Janca, “Protection coatings for polycarbonates based on PECVD from organosilicon feeds” , Vacuum, Vol. 50, pp.19-21, 1998.
[7]Zajickvoa, Bursikova and Perina, “Plasma modification of polycarbonates”, Surface and Coatings Technology, pp.449-454, 2001.
[8]A. Bousquet, V. Bursikova, A. Goullet, A. Djouadi, L. Zajickova, A. Granier, “Comparison of structure and mechanical properties of SiO2-like films deposited in O2/HMDSO pulsed and continuous plasmas”, Surface and Coatings Technology, pp.6517-6521, 2006.
[9]L. Zajickvoa, V. Bursikova, Z. Kucerova, D. Franta, P. Dvorak, R. Smid, V. Perina and A. Mackova, “Deposition of protective coatings in rf organosilicon discharges”, Plasma Sources Science and Technology, Vol. 16, pp.123-132, 2007.
[10]A. Kuwabara, Shin-ichi Kuroda, H. Kubota, “Preparation of a CVD thin film by an atmospheric pressure low temperature surface discharge plasma torch”, Plasma Sources Science and Technology, Vol. 15, pp.328-331, 2006.
[11]S. E. Babayan, J. Y. Jeongy, V. J. Tuy, J. Parkz, G. S. Selwynz, R. F. Hicks, “Deposition of silicon dioxide films with an atmospheric-pressure plasma jet”, Plasma Source Science and Technology, Vol. 7, pp.286-288, 1998.
[12]Zygmunt Rymuza, Maciej Misiak, Zenobia Rzanek-Boroch, Krzysztof Schmidt-Szalowski, Jadwiga Janowska, “The effects of deposition and test conditions on nanomechanical behaviour of ultrathin films produced by plasma-enhanced chemical vapour deposition process at atmospheric pressure”, Thin Solid Films, Vol. 466, pp.158-166, 2004.
[13]G. R. Nowling, M. Yajima, S. E. Babayan, M. Moravej, X. Yang, W. Hoffman, R. F. Hicks, “Chamberless plasma deposition of glass coatings on plastic”, Plasma Source Science and Technology, Vol. 14, pp.477-484, 2005.
[14]Volkmar Hopfe, Ralf Spitzl, Ines Dani, Gerrit Maeder, Liliana Roch, Daniela Rogler, Beate Leupolt, Bolko Schoeneich, “Remote Microwave PECVD for Continuous, Wide-Area Coating Under Atmospheric Pressure”, Chemical Vapor Deposition, Vol. 11, pp.497-509, 2005.
[15]H. Hertz, J. Reine and Angewandte, Mathematik, Vol. 92, 1882.
[16]J. Boussinesq, Applications des Potentiels a l’etude de l’equilibre et du movement des solides elastiques, 1885.
[17]D. Tabor, “A simple theory of static and dynamic hardness,” Proc. R. Soc. A192, pp. 247-273, 1948.
[18]I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Engng. Sci., Vol. 3, pp. 47-57, 1965.
[19]W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J.Mater. Res., Vol. 7, No. 6 , pp. 1564-1583, 1992.
[20]G. M. Pharr, W. C. Oliver and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," J. Mater. Res., Vol. 7, No. 3, pp. 613-617, 1992.
[21]J. B. Pethica, R. Hutchings, W. C. Oliver, “Hardness measurement at penetration depths as small as 20 nm,“ Philos. Mag. A. 48, 593, 1983.
[22]R. B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Structure, 23, 1657, 1987.
[23]Xiaoqin Huang and Assimina A. Pelegri, “Mechanical characterization of thin film materials with nanoindentation measurements and FE analysis”, Journal of Composite Materials, Vol. 40, No. 15, pp. 1393-1407, 2006.
[24]Seung Min Han, Ranjana Saha, William D. Nix, “Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation,” Acta Materialia, Vol. 54, pp.1571-1581, 2006.
[25]Y. G. Jung, B. R. Lawn, M. Martyniuk, H. Huang, X. Z. Hu,“Evaluation of elastic modulus and hardness of thin films by nanoindentation”, J. Mater. Res., Vol. 19, No.10, pp. 3076-3080, 2004.
[26]S. Takada, N. Hata, Y. Seino, K. Yamada, Y. Oku, T. Kikkawa, “Mechanical Property and Network Structure of Porous Silica Films”, Japanese Journal of Applied Physics, Vol. 43, No.5A, pp. 2453-2456, 2004.
[27]L. Boudoukha, S. Paletto, G. Fantozzi, “Effects of ion implantation and annealing on mechanical properties of ceramic using nanoindentor techniques”, Journal of Material Science, Vol. 32, pp.2911-2920, 1997.
[28]Jenq-Shiuh Chou and Si-Chen Lee, “Effect of porosity on infrared-absorption spectra of silicon dioxide”, J. Appl. Phys., Vol. 77, No.4, 1995.
[29]X. Zhu, F. Arefi-Khonsari, C. Petit-Etienne, M. Tatoulian, “Open Air Deposition of SiO2 Films by an Atmospheric Pressure Line-Shaped Plasma”, Plasma Processes and Polymers, Vol. 2, pp. 407-413, 2005.
[30]S. E. Babayan, J. Y. Jeong, A. Schutze, V. J. Tu, M. Moravej, G. S. Selwyn, R. F. Hicks, “Deposition of silicon dioxide films with a non-equilibrium atmospheric pressure plasma jet”, Plasma Source Science and Technology, Vol. 10, pp. 573-578, 2001.
[31]S. E. Alexandrov, N. McSporran, M. L. Hitchman, “Remote AP-PECVD of silicon dioxide films from hexamethyldisiloxane (HMDSO)”, Chemical Vapor Deposition, Vol. 11, pp. 481-490, 2005.
[32]A. Ladwig, S. Babayan, M. Smith, M. Hester, W. Highland, R. Koch, R. Hicks, “ Atmospheric plasma deposition of glass coating on aluminum”, Surface and Coatings Technology, Vol. 201 pp. 6460-6464, 2007.
[33]M. Martyniuk, J. Antoszewski, B. A. Walmsley, Charles A. Musca, J. M. Dell, Yeon-Gil Jung, B. R. Lawn, H. Huang, L. Faraone, “Determination mechanical properties of silicon nitride thin films using nanoindentation”, Proc. of SPIE, Vol. 5798, pp. 216-225, 2005.
[34]M. S. Haque, H. A. Naseem, W. D. Brown, “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability”, Thin Solid Films, Vol. 308-309, pp.68-73, 1997.
[35]S. K. Ray, C. K. Maiti, S. K. Lahiri, N. B. Chakraborti, “Properties of silicon dioxide films deposited at low temperatures by microwave plasma enhanced decomposition of tetraethylorthosilicate”, J. Vac. Sci. Technol., Vol. B 10 (3), pp. 1139-1150, 1992.
[36]J. A. Rodriguez, C. Dominguez, F. J. Munoz, A. Llobera, “Mechanical properties of PECVD silicon oxide films suitable for integrated optics applications”, Proc. of SPIE, Vol. 3953, pp. 142-149, 2000.
[37]R. Saha, W. D. Nix, “Effects of Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation”, Acta Materialia, Vol. 50, pp. 23-38, 2002.
[38]G. R. Nowling, S. E. Babayan, V. Jankovic, R. F. Hicks, “Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure”, Plasma Source Science and Technology, Vol. 11, pp.97-103, 2002.
[39]M. Moravej, S. E. Babayan, G. R. Nowling, X. Yang, R. F. Hicks, “Plasma enhanced chemical vapour deposition of hydrogenated amorphous silicon at atmospheric pressure”, Plasma Source Science and Technology, Vol. 13, pp.8-14, 2004.
[40]S. P. Bugaev, A. D. Korotaev, K. V. Oskomov, N. S. Sochugov, “Properties of diamondlike films obtained in a barrier discharge at atmospheric pressure”, Zhurnal Tekhnicheskoi Fiziki, Vol. 67, pp.100-104, 1997.
[41]Yong-Hyuk Lee, Se-Jin Kyung, Chan-Woo Kim, Geun-Young Yeom, “Characteristic of carbon nanotubes synthesized by pin-to-plate type atmospheric pressure plasma enhanced chemical vapr deposition at low temperature” Carbon, Vol. 44, No. 4, pp.807-809, 2006.
[42]R. Prat, Y. J. Koh, Y. Babukutty, M. Kogoma, S. Okazaki, M. Kodama, “Polymer deposition using atmospheric pressure plasma glow (APG) discharge” , Polymer, Vol. 41, pp. 7355-7360, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top