跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱俊凱
研究生(外文):Jyun-Kai Ciou
論文名稱:CO2氣體輔助微熱壓製程開發研究
論文名稱(外文):Development of CO2 gas-assisted micro embossing process
指導教授:楊申語楊申語引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:132
中文關鍵詞:二氧化碳微熱壓微透鏡增亮膜
外文關鍵詞:CO2micro hot embossingmicro-lensbrightness enhancement film
相關次數:
  • 被引用被引用:3
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統微熱壓製程需先將塑膠基板加熱到玻璃轉移溫度(Tg)之上,再以表面有微結構的母模加壓,接著降至室溫脫模取出成品;如此升降溫不僅耗時,且塑膠基板會因熱脹冷縮,尺寸精度受影響,並有殘留內應力。而加壓方面,藉壓板機構加壓,壓力分佈不均,複製面積及精度都受限,也無法以脆性材料(如矽晶圓、石英玻璃)作模具。

為了解決上述傳統微熱壓製程的缺陷,本研究提出以高壓CO2氣體來塑化塑膠基板,降低成型溫度,並利用氣體等向、等壓之施壓特性來進行壓印,可將大面積母模上的微結構在低於Tg的成型溫度,完整轉印至塑膠基材上。

實驗結果顯示,CO2氣體輔助微熱壓製程可在低於塑膠玻璃轉移溫度(Tg),完整複製出微結構。且壓印塑膠成品殘留應力極低。對於轉印次微米深度之微結構,在常溫下(23℃),即可達完整轉印;轉印較深之微結構,可藉著提升製程溫度與滲入壓力,成功轉印微結構。

本研究進一步將所開發的壓印製程,應用於增亮膜、導光板、光碟片、微透鏡、Fresnel lens、微流道等微結構元件複製,成功的將模具之微結構均勻轉印至PMMA塑膠基材上,並將轉寫效果與傳統微熱壓製程作比較,突顯本製程的優勢所在。
In conventional hot embossing, the polymer substrate is first heated to a temperature higher than its glass transition temperature(Tg); the substrate and the stamp are then brought into contact and are compressed directly by the hot plates. The accuracy and area of replication are limited due to the inherent non-uniform pressure distribution of the hot-plate compression. Besides, materials such as Si-wafers and glass are too brittle to be used as the embossing molds in the conventional hot embossing operation.

This paper reports the development of a CO2–assisted embossing process. Since CO2 is a good solvent for polymers such as PMMA, it can serve as the plasticizing agent to soften the substrate; the embossing temperature can be operated below Tg, even at room temperature. Furthermore, CO2 is used as the pressing medium. The distribution of gas pressure is uniform, the process is advantageous to large-area imprinting. The Si and glass-based materials can be used as embossing mold.

The results show that patterns can be transferred onto the surface of polymer substracts with low pressure at a temperature below Tg. The low-temperature and low-pressure imprinting can reduce residual stress and shrinkage of the embossed substrates. The sub-micron patterns can even be transferred onto the surface of polymer substracts at room temperature﹗ For replicating microstructure with deeper patterns, higher temperature and absorption pressure are needed.

In this study, the CO2-assisted embossing method has been successfully employed to fabricate optical components including brightness enhancement film, light guiding plate, VCD micro-patterns, micro lens arrays, and Fresnel lens. CO2-assisted micro-embossing has been proven to be an effective and efficient process for replicating microstructured-parts with low residual stress at low-temperature and with low-pressure.
第一章 導論1
1.1 前言1
1.2 傳統微熱壓成型1
1.3 傳統微熱壓的問題2
1.4 流體微熱壓成型3
1.5 CO2氣體(溶劑)用於低溫塑化塑膠材料4
1.6 研究動機及目的5
1.7 研究重要性與具體研究方向5
1.8 論文架構6

第二章 文獻回顧22
2.1 塑膠微熱壓成型文獻22
2.2 奈米壓印技術文獻24
2.3 CO2氣體輔助微熱壓成型文獻26
2.4 流體微熱壓製程 29
2.5 綜合歸納29

第三章 實驗設置與實驗方法36
3.1 實驗設備36
3.2 實驗方法44
3.3 本章結論46

第四章 製程參數之實驗結果與討論62
4.1 探討CO2氣體輔助微熱壓製程於常溫下之成型能力62
4.2 製程參數對微結構成型性探討66
4.3 CO2氣體輔助微熱壓製程應用於軟模壓印實驗69
4.4 CO2氣體輔助微熱壓製程缺陷及解決之道70
4.5 本章結論74

第五章 CO2氣體輔助微熱壓製作增亮膜元件98
5.1 增亮膜元件的應用與製作方法98
5.2 CO2輔助微熱壓製程製作增亮膜元件99
5.3 製程操作窗繪製 102
5.4 製程應用於其它微結構元件複製103
5.5 本章結論104

第六章 結論與未來研究方向123
6.1 結論123
6.2 未來研究方向124

參考文獻126
附錄A 表面輪廓儀量測圖133
附錄B 個人著作150
A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H.M. Janssen, R.P. Sijbesma, “Room-temperature and low-pressure nanoimprint lithography”, Microelectronic Engineering, pp. 371-377(2002).

A. Pepin, P. Youinou, V. Studer, A. Lebib, and Y. Chen, “Nanoimprint lithography for the fabrication of DNA electrophoresis chips”, Microelectronic Engineering, Vol. 61–62, pp. 927–932 (2002).

C. C. Huang, K. L. Ekinci, “Fabrication of freely suspended nanostructures by nanoimprint lithography”, Applied physics letters,093110(2006).

C. H. Liu, W. Y. Jywe, L. H. Shyu, C. J. Chen, “Application of a diffraction grating and position sensitive detectors to the measurement of error motion and angular indexing of an indexing table”,Precision engineering,pp. 440-448(2005).

C. R. Lin, R. H. Chen, C. Hung, “The characterisation and finite-element analysis of a polymer under hot pressing”, International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 230-235 (2002).

C. G. Willson, M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, and J. G. Ekerdt, “Step and Flash Imprint Lithography: A new approach to high resolution patterning”, Proc. SPIE 3676(I): 379 (1999).

D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, L. J. Lee, K. W. Koelling, “A review of CO2 applications in the processing of polymers”,Ind. Eng. Chem. Res.,pp.6431-6456(2003).

D. Y. Khang, H. H. Lee, “Pressure-Assisted Capillary Force Lithography”,Advanced materials,pp.176-179(2004).

D. B. Wolfe, J. C. Love, B. D. Gates, G. M. Whitesides, “Fabrication of planar optical waveguides by electrical microcontact printing”,Applied physics,pp. 1623-1625(2003).

D. Y. Khang, H. H. Lee, “Room-teperature imprint by solvent vapor treatment”, J. Applied physics,Vol.76, pp. 870-872(2000).

E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic molding (LIGA process)“, Microelectronic Engineering, Vol. 4, pp. 35-36 (1986).

H. Schift, S. Park, B. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, J. Gobrecht “Fabrication of polymer photonic crystals using nanoimprint lithography”, Nanotechnology, pp.S26-S265(2005).

H. D Rowland, W. P King, “Polymer deformation and filling modes during microembossing”, J. M. M., pp.1625-1632(2004).

H. Becker, U. Heim, “Silicon as tool material for polymer hot embossing”, Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS ''99, pp. 228-231 (1999).

H. S. Lee, S. K. Lee, T. H. Kwon, S. S. Lee, “Birefringence Distribution in V-grooved optical parts by hot embossing process”, IEEE/LEOS International Conference on Optical MEMS, pp. 135-136 (2002).

H. Tana, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography”, J. Vac. Sci. Technol. B, Vol. 16, No. 6, pp. 3926-3928 (1998).

J. Wang, S. Schabitsky, Z. Yu, W. Wu, S. Y. Chou, “Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm perio metal-gratings using nanoimprint lithography”, J. Vac. Sci. Technol,pp.2957-2960(1999).

J. Narasimhan, I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices”, Journal of Micromechanics and Microengineering, Vol. 14, pp. 96-103 (2004).

K. Y. Suh, Y. S. Kim, H. H. Lee, “Capillary force lithography” Advanced materials,pp.1386-1389(2001).

K. Deguchi, N. Takeuchi, A. Shimizu, “Evaluation of press-uniformity using a pressure sensitive film and calculation of wafer distortions caused by mold press in imprint lithography”, Microprocesses and Nanotechnology Conference, pp. 100-101 (2001).

L. J. Heyderman, B. Ketterer, D. Bachle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. Tiefenauer, O. Dubochet, P. Surbled, and T. Hessler, “High volume fabrication of customised nanopore membrane chips”, Microelectronic Engineering, Vol. 67–68, pp. 208–213 (2003).

M. Li, L. Chen, and S. Y. Chou, “Direct three-dimensional patterning using nanoimprint lithography ”, Appl. Phys. Lett. ”, Vol. 78, No. 21, pp. 3322-2904 (2001).

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography”, Appl. Phys. Lett. ”, Vol. 76, No. 6, pp. 3322-2904 (2000).

M. T. Gale., J. Kane, K. Knop, “ZOD images: embossable surface-relief structures for color and black-and-white reproduction”, J. Appl. Photogr. Eng., 4, 41 (1978).

M. Belotti, J. Torres, E. Roy, A. Pepin, Y. Chen, “Replication of photonic crystals by soft ultraviolet-nanoimprint”, J. Applied physics, 024309(2006).

M. Belotti, M. Galli, D. Bajoni, L.C. Andreani, G. Guizzetti, D. Decanini, Y. Chen, “Investigation of SOI photonic crystals fabrication by both electron-beam lithography and nanoimprint lithography”, Microelectronic Engineering, pp.405-411(2004).

M. Konijn, M.M. Alkaisi, R.J. Blaikie, “Nanoimprint lithography of sub-100 nm 3D structures”, Microelectronic Engineering, pp.653-658(2005).

M. Li, L. Chen, W. Zhang, S. Y Chou, “Pattern transfer fidelity of nanoimprint lithography on six-inch wafers”, Nanotechnology, pp.33-36(2003).

M. Okinaka, K. Tsukagoshi, Y. Aoyagi, “Nonlinear optical polymer patterned by nanoimprint lithography as a photonic waveguide structure”, J. Vac. Sci. Technol, pp.271-273(2006).

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography”, J. Applied physics, pp.5299-5301(2004).

N. Bogdanski, M. Wissen, A. Ziegler, H.-C. Scheer, “Temperature-reduced nanoimprint lithography for thin and uniform residual layers”, Microelectronic Engineering, pp.598-604(2005).

R. Bartolini, W. Hannan, D. Karlsons, M. Lurie, “Embossed hologram motion pictures for television playback”, Appl. Opt., Vol. 9, pp. 2283-2290 (1970).

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography ,” J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp. 4129-4133 (1996)

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B, Vol. 15, No. 6, pp. 2897-2904 (1997).

S. S. Nozaki, M. Ohshima, “A CO2 assiste nanoimprinting and cold embossing”, ANTEC, pp.2551-2555(2006).

S. Y. Chou, P. R. Krauss, P. J. Renstorm, “Nanoimprint lithography”, J. Vac. Sci. Technol, pp.4129-4133(1996).

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. park, P. W. Yoon, “Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching”, Microelectronic Engineering, pp.314-318(2005).

S. Traut, M. Rossi, H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array”, Journal of Modern Optics, Vol. 47, No. 13, pp. 2391-2397 (2000).

V. Grigaliunas, S. Tamulevicius, R. Tomasiunas, V. Kopustinskas, A. Guobiene, D. Jucius, “Laser pulse assisted nanoimprint lithography”, Thin Solid Films, pp.13-15(2004).

W. M. Choi, M. Y. Song, O. O. Park, “Compressed-carbon dioxide (CO2) assisted nanoimprint lithography using polymeric mold”, Microelectronic Engineering, pp.1957-1960(2006).

X. Liang, W. Zhang, M. Li, Q. Xia, W. Wu, H. Ge, X. Huang, S. Y. Chou, “Electrostatic Force-Assisted Nanoimprint Lithography(EFAN)”, Nano letters, Vol.5, pp. 527-530(2005).

X. Cheng, L. J. Guo, “One-step lithography for various size patterns with a hybrid mask-mold“, Microelectronic Engineering, pp. 288-293(2004).

X. Cheng, D. Li, L J. Guo, “A hybrid mask-mould lithography scheme and its application in nanoscale organic thin film transistors”, Nanotechnology, 297-232(2006).

Y. Xia, and G. M. Whitesides, "Soft Lithography", Angew. Chem. Int. Ed., 37, 550-575. (1998).

Y. Wang, Z. Liu, B. Han, Y. Huang, J. Zhang, D. Sun, J. Du, “Compressed-Assisted Patterning of polymers”, J. Phys. Chem., pp.12376-12379(2005).

Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. lrie, K. Nakagawa, M. Sasago, “Study of the resist deformation in nanoimprint lithography”, J. Vac. Sci. Technol, pp. 2811-2815(2001).

Y. Hirai, T. Konishi, T. Yoshikawa, S. Yoshida, “Simulation and experimental study of polymer deformation in nanoimprint lithography”, J. Vac. Sci. Technol, pp.3288-3293(2004).

Y. J. Juang, L. J. Lee, K. W. Koelling, “Hot Embossing in Microfabrication. Part I: Experimental”, Polymer Engineering and Science, Vol. 42, No. 3, pp. 539-550 (2002).

Y. J. Juang, , L. J. Lee, K. W. Koelling, “Hot Embossing in Microfabrication. Part II: Rheological Characterization and Process Analysis”, Polymer Engineering and Science, Vol. 42, No. 3, pp. 551-566 (2002).

Z. Yu, L. Chen, W. Wu, H. Ge, S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography”, J. Vac. Sci. Technol, pp.2089-2092(2003).

張哲豪, “ 流體微熱壓製程開發研究”,臺灣大學博士論文,民國93年6月。

趙啟仲, “ 軟模氣體熱壓應用於大面積微奈米壓印製程研究”,臺灣大學碩士論文,民國93年6月。

翁永春, “ 氣輔軟模紫外光固化微奈米壓印製程應用製作光波導元件之研究”,台灣大學碩士論文,民國94年6月。

黃培穎, “ 氣體輔助軟模壓印技術之研發應用於製作SU-8脊梁式光波導元件”,台灣大學碩士論文,民國95年6月。

張致遠, “ 創新型微奈米軟模轉印技術之研發與應用”,台灣大學博士論文,民國95年6月。

羅金德, “ 超音波加熱壓印微結構的研究”,臺灣大學碩士論文,民國91年6月。

杜子邦, “ 超臨界二氧化碳在高分子中之吸收與擴散的量測及在合成導電性高分子掺合物之應用”,臺灣大學碩士論文,民國91年6月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊