跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智凱
研究生(外文):Chih-Kai Chang
論文名稱:系統化複材三明治車體結構設計及最佳化方法
論文名稱(外文):Systematic Design and Optimization of Composite Sandwich Car Structures
指導教授:鄭榮和
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:156
中文關鍵詞:最佳化複合材料三明治結構車體結構演化式方法等效元素
外文關鍵詞:optimizationcompositessandwich structurecar bodyevolutionaryequivalent element
相關次數:
  • 被引用被引用:4
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對高比強度及剛性之複合材料三明治車體結構,結合構成材料選擇、基本尺寸解析估算、實驗測試、及最重要的高效率自動化最佳化設計、局部套筒設計,建構一涵蓋完整系統化流程,目標在於提供複雜複材車體結構清楚完整之設計參考。
本論文首先比較常用複合材料面、心材比剛性、強度等特性,提供設計選擇參考,以所選擇材料,對於結構體進行初步梁、板解析計算、實驗及基本最佳化方法整理,續針對車體結構所需嚴苛剛性及強度需求,針對三明治結構特性提出演化式三明治結構最佳化方法及等效殼元素等工具,以遠高於傳統方法之效率最佳化材料參數組合。最後針對三明治結構弱點-應力集中處進行細部設計分析,建構完整設計考量。本研究並以兩個設計完成實例:台大機械第三代太陽能車及第一代燃料電池複合動力車展示所開發設計方法之流程及成果。
根據本論文之系統化設計及最佳化流程,能夠根據設計者需求,以最短時間完成一最高比剛性或強度之車體結構,特別是對於日益苛求重量之未來節能車輛或高性能跑車,達到遠低於傳統金屬結構重量之理想。
This research focuses on ultra-high specific stiffness and strength composites sandwich car structures. The topics include material selection, analytical evaluation, experiments, highly efficient and automatic optimization tools, and detailed insert design. It aims to construct complete and systematic design procedures to deal with complicated composites structures.
It firstly compares practical face and core materials for selection references, and summarizes experiments and analytical optimization methods for simple beams or plates. The whole body structure optimization is then carried out with a novel algorithm-ESSO (Evolutionary Sandwich Structural Optimization) and an equivalent shell element. The proposed optimization method can efficiently find out best material combinations to fulfill tough stiffness and strength requirements for various driving conditions. Besides, it developes detailed design methods for sandwich structure weakest points, where concentrated loads applied.
Two successful design examples-the third generation solar car and the first generation fuel-cells hybrid car of Mechanical Engineering Department, National Taiwan University demonstrate efficiency and accuracy of the proposed design and optimization procedures. In conclusion, this research provides an effective way for designers to design a highly efficient green car or a high-performance sports car that expects an extra-low weight structure.
目錄
誌謝 III
中文摘要 IV
Abstract V
目錄 VI
圖目錄 X
表目錄 XV
符號說明 XVII
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究內容與方法 3
1.3.1 使用軟體簡介 6
1.4 論文內容架構 7
2 第二章 文獻回顧 9
2.1 三明治結構最佳化 9
2.1.1 剛性最佳化 9
2.1.2 強度最佳化 10
2.1.3 剛性及強度最佳化 13
2.2 三明治車體結構最佳化 14
2.2.1 車體結構發展 14
2.2.2 結構拓撲設計 17
2.2.3 三明治材料參數最佳化 22
2.3 套筒及接合設計 23
2.4 設計及最佳化方法 28
2.4.1 設計方法 28
2.4.2 最佳化演算法 30
2.5 討論 34
3 第三章 三明治結構設計 36
3.1 材料介紹 37
3.2 常用材料比較 42
3.2.2 最佳組成搭配 44
3.3 解析計算 46
3.3.1 基本三明治強度及剛性計算 46
3.3.2 解析最佳化方法 47
3.3.3 分析工具驗證 49
4 第四章 車體結構設計及最佳化 52
4.1 車體結構設計方法 52
4.1.1 設計流程 52
4.1.2 拓撲設計 54
4.1.3 材料參數最佳化 57
4.2 車體剛性及強度測試規範 58
4.3 等效殼元素 61
4.3.1 前言 61
4.3.2 等效殼元素推導 62
4.3.3 準確性驗證 63
4.4 演化式三明治結構最佳化- ESSO 67
4.4.1 複材三明治結構演化式方法- 67
4.4.2 ESSO準確性及效率驗證 69
4.5 材料參數設計 71
4.6 討論 74
5 第五章 細部設計 76
5.1 前言 76
5.2 三明治結構實驗 76
5.2.1 三明治板彎曲實驗 77
5.2.2 T型接合實驗 79
5.2.3 L型接合實驗 84
5.2.4 套筒拉伸實驗 88
5.2.5 膠合實驗 92
5.3 套筒局部強化設計 95
5.3.1 強度分析模型 97
5.3.2 強度設計流程 99
5.3.3 設計參數分析 102
5.3.4 結果及討論 104
5.4 套筒位移計算 105
5.4.1 位移計算模型建立 106
5.4.2 模型參數分析 111
5.4.3 代數化公式建立 115
5.4.4 代數公式結果驗證 117
5.5 最佳化設計 119
6 第六章 應用實例 122
6.1 前言 122
6.2 台大機械太陽能車結構設計 122
6.2.1 設計方法及判準 123
6.2.2 最佳化演算法比較 127
6.2.3 設計結果及討論 128
6.3 台大機械燃料電池複合動力車結構最佳化 130
6.3.1 最佳化方法 130
6.3.2 設計範圍縮減 131
6.3.3 實際車體最佳化 136
6.3.4 結果及討論 138
6.4 討論 139
7 第七章 總結及討論 140
7.1 成果總結 140
7.2 研究討論 141
7.3 未來研究方向 142
附錄 144
參考文獻 149
[1]S. Y. Hu and J. H. Cheng, "Development of an Object-oriented Optimization Software for Industrial Utilization," Proceedings of the 4th Conference of OPTDES, Japan, 2004.
[2]胡斯遠, "新型流道式風力發電機組之研發設計," 台灣大學機械工程學研究所博士論文, 2005.
[3]E. W. Kuenzi, "Minimum Weight Structural Sandwich," U.S. Forest Service Research Note FPL-086, Forest Product Laboratory, U.S. Department of Agriculture, 1965.
[4]J. C. M. Theulen and A. A. J. M. Peijs, "Tech. Note: Optimization of the Bending Stiffness and Strength of Composite Sandwich Panels," Composite Structures, Vol. 17, pp. 87-92, 1991.
[5]L. J. Gibson, "Optimization of Stiffness in Sandwich Beams with Rigid Foam Cores," Materials Science and Engineering, Vol. 67, pp. 125-135, 1984.
[6]L. A. Demsetz and L. J. Gibson, "Minimum Weight Design for Stiffness in Sandwich Plates with Rigid Foam Cores," Materials Science and Engineering, Vol. 85, pp. 33-42, 1987.
[7]D. Zenkert, "The Handbook of Sandwich Construction," EMAS, Cradley Heath, UK, 1997.
[8]M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson and H. N. G. Wadley, "Metal Foams: A Design Guide," Butterworth-Heinemann, Woburn, MA, USA, 2000.
[9]T. C. Triantafillou and L. J. Gibson, "Minimum Weight Design of Foam Cores Sandwich Panels for a Given Strength," Materials Science and Engineering, Vol. 95, pp. 55-62, 1987.
[10]L. J. Gibson and M. F. Ashby, "Cellular Solids-Structures and Properties," Cambridge University Press, Cambridge, UK, 1997.
[11]林百福, "汽車設計," 全華科技圖書, 台北, 台灣, 2000.
[12]A. B. Lovins, J. W. Barnett and L. H. Lovins, "Supercars: The Coming Light-Vehicle Revolution," Procs. Summer Study of the European Council for an Energy-Efficient Economy, Rungstedgård, Denmark, 1993.
[13]A. E. Mascarin, J. R. Dieffenbach, M. M. Brylawski, D. R. Cramer and A. B. Lovins, "Costing the Ultralite in Volume Production: Can Advanced Composite Bodies-in-White Be Affordable?," IBIS Associates, and The Hypercar Center, Rocky Mountain Institute, 1995.
[14]J. M. Ogden, M. M. Steinbugler and T. G. Kreutz, "A Comparison of Hydrogen, Methanol and Gasoline as Fuels for Fuel Cell Vehicles: Implications for Vehicle Design and Infrastructure Development," Journal of Power Sources, Vol. 79, pp. 143–168, 1999.
[15]H. A. Eschenauer and N. Olhoff, "Topology Optimization of Continuum Structures: A Review," Applied Mechanics Reviews, Vol. 54, No. 4, pp. 331-390, 2001.
[16]M. P. Bensoe and N. Kikuchi, "Generating Optimal Topologies in Structural Design Using a Homogenization Method," Computer Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197-224, 1988.
[17]H. P. Rossow and J. E. Taylor, "A Finite Element Method for the Optimal Design of Variable Thickness Sheets," AIAA Jouranl, Vol. 11, pp. 1566–1569, 1973.
[18]Y. M. Xie and G. P. Steven, "A Simple Evolutionary Procedure for Structural Optimization," Computers and Structures, Vol. 49, No. 5, pp. 885–896, 1993.
[19]Y. M. Xie and G. P. Steven, "Evolutionary Structural Optimization," Springer, New York, USA 1997.
[20]O. M. Querin, G. P. Steven and Y. M. Xie, "Evolutionary Structural Optimisation by an Addative Algorithm," Finite Elements in Analysis and Design, Vol. 34, pp. 291-308, 2000.
[21]O. M. Querin, G. P. Steven and Y. M. Xie, "Evolutionary Structural Optimization (ESO) Using a Bidirectional Algorithm," Engineering Computations, Vol. 15, No. 8, pp. 1031–1048, 1998.
[22]O. M. Querin, V. Young, G. P. Steven and Y. M. Xie, "Computational Efficiency and Validation of Bi-directional Evolutionary Structural Optimisation," Computer Methods in Applied Mechanics and Engineering, Vol. 189, pp. 559-573, 2000.
[23]J. Fukushima, K. Suzuki and N. Kikuchi, "Shape and Topology Optimisation of a Car Body with Multiple Loading Conditions," SAE Transactions, Vol. 101, No. 66, 1992.
[24]H. Fredricson, "Structural Topology Optimisation: An Application Review," International Journal of Vehicle Design, Vol. 37, No. 1, pp. 67-80, 2005.
[25]C. Reed, "Applications of OptiStruct Optimization to Body in White Design," Altair Engineering Ltd, 2002.
[26]U. Ringertz, B. Esping and J. Backlund, "Computer Sizing of Sandwich Constructions," Composite Structures, Vol. 5, pp. 251-279, 1986.
[27]N. S. Ermolaeva, M. B. G. Castro and P. V. Kandachar, "Materials Selection for An Automotive Structure by Integrating Structural Optimization with Environmental Impact Assessment," Materials and Design, Vol. 25, pp. 689-698, 2004.
[28]M. E. Botkin, "Modeling and Optimal Design of a Carbon Fibre Reinforced Composite Automotive Roof," Engineering with Computers, Vol. 16, pp. 16-23, 2000.
[29]ESA, "Insert Design Handbook," European Space Agency, 1987.
[30]O. T. Thomsen and W. Rits, "Analysis and Design of Sandwich Plates with Inserts-a High-order Sandwich Theory Approach," Composites Part B, Vol. 29, pp. 795-807, 1998.
[31]E. Bozhevolnaya, O. T. Thomsen, A. Kildegaard and V. Skvortsov, "Local Effects Across Core Junctions in Sandwich Panels," Composites Part B, Vol. 34, pp. 509-517, 2003.
[32]C. Kildegaard, "Experimental and Numerical Fracture Mechanical Studies of Frp Sandwich T-Joints in Maritime Constructions," Proceedings of the Second International Conference on Sandwich Construction, Gainsville, Florida, USA, 1992.
[33]U. V. R. S. Turaga and C. T. Sun, "Failure Modes and Load Transfer in Sandwich T-Joints," Journal of Sandwich Structures & Materials, Vol. 2, No. 3, pp. 225-245, 2000.
[34]U. V. R. S. Turaga, "A Study of Sandwich T-Joints and Composite Lap Joints," Doctoral Dissertation, School of Aeronautics and Astronautics, Purdue University, 2003.
[35]E. E. Theotokoglou, "Experimental and Numerical Study of Composite T-Joints," Journal of Composite Materials, Vol. 30, No. 2, pp. 190-209, 1996.
[36]E. W. Kuenzi, "Structural Sandwich Design Criteria," FPL Report No. 2161, Forest Product Laboratory, U.S. Department of Agriculture, 1959.
[37]S. Cheng, "Torsion of Rectangular Sandwich Plate," USDA Forest Service Research Report FPL-1871, Forest Product Laboratory, U.S. Department of Agriculture, 1959.
[38]F. J. Plantema, "Sandwich Construction," John Wiley & Sons, New York, USA, 1966.
[39]K. H. Lo, R. M. Christensen and E. M. Wu, "A High-order Theory of Plate Deformation," Transaction of ASME, Journal of Applied Mechanics, Vol. 44, pp. 669-676, 1977.
[40]J. N. Reddy, "A Simple Higher-order Theory for Laminated Composite Shells," Transaction of ASME, Journal of Applied Mechanics, Vol. 51, pp. 745-752, 1984.
[41]W. Spendley, G. R. Hext and F. R. Himsworth, "Sequential Applications of Simplex Designs in Optimization and Evolutionary Operation," Technometrics, Vol. pp. 441-461, 1962.
[42]J. A. Nelder and R. Mead, "A Simplex Method for Function Minimization," The Computer Journal, Vol. 7, pp. 308-313, 1965.
[43]M. J. Box, "A New Method of Constrained Optimization and a Comparison with Other Methods," The Computer Journal, Vol. 8, pp. 42-52, 1965.
[44]S.-Y. Hu and J.-H. Cheng, "Development of the Unlocking Mechanisms for the Complex Method," Computers and Structures, Vol. 83, pp. 1991-2002, 2005.
[45]P. B. Thanedar and G. N. Vanderplaats, "Survey of Discrete Variable Optimization for Structural Design," Journal of Structural Engineering, Vol. 121, No. 2, pp. 301-306, 1995.
[46]K. F. Man, K.-S. Tang and S. Kwong, "Genetic Algorithms: Concepts and Designs," Springer, New York, USA, 1999.
[47]H. P. Mlejnek and R. Schirrmacher, "An Engineers Approach to Optimal Material Distribution and Shape Finding," Computer Methods in Applied Mechanics and Engineering, Vol. 106, pp. 1-26, 1993.
[48]林逸祥, "燃料電池混合動力車複合材料車體結構設計方法之研究," 台灣大學機械工程學研究所碩士論文, 2006.
[49]Nomex®, E.I. DuPont de Nemours, Wilmington, Delaware, USA,
[50]HRH-10®, Hexcel Corporation, Pleasanton, California, USA,
[51]T. Bitzer, "Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing ", Champan & Hall, UK, 1997.
[52]Divinycell®, "H grade," DIAB Co., Laholm, Sweden,
[53]LAST-A-FOAM®, "TR & FR series," General Plastics Manufacturing Co., Washington, USA,
[54]Superlite®, Baltek Co., Northvale, NJ, USA,
[55]S. McBeath, "Competition Car Composites," Haynes Publishing, UK, 2002.
[56]Scotch-WeldTM, "AF-163-2K Structural Adhesive Film," 3M Co., MN, USA,
[57]R. Okada and M. T. Kortschot, "The Role of the Resin Fillet in the Delamination of Honeycomb Sandwich Structures," Composites Science and Technology, Vol. 62, No. 14, pp. 1811-1819, 2002.
[58]曾頎峰, "應用田口方法於複合材料三明治樑彎曲效能之分析," 台灣大學機械工程學研究所碩士論文, 2005.
[59]N. K. Bau-Madsen, K. H. Svendsen and A.Kildegaard, "Large Deflections of Sandwich Plates-an Experimental Investigation," Composite Structures, Vol. 23, No. 1, pp. 47-52, 1993.
[60]H. J. Riber, "Non-linear Analytical Solutions for Laterally Loaded Sandwich Plates," Composite Structures, Vol. 39, No. 1-2, pp. 63-83, 1997.
[61]R. Tanov and A. Tabiei, "Finite Element Implementation of a New Sandwich Homogenization Procedure," Composite Structures, Vol. 50, pp. 49-58, 2000.
[62]W. F. Milliken and D. L. Milliken, "Race Car Vehicle Dynamics," SAE International, Warrendale, PA, USA, 1995.
[63]"UltraLight Steel Auto Body Engineering Report: Testing and Results," PORSCHE Engineering Services Inc., 1995.
[64]ASTM C393, "Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure," Annual Book of ASTM Standards, 2006.
[65]Hexweb, "HRH-10," Hexcel Corporation, Pleasanton, California, USA,
[66]Airex®, "R82.110," Baltek Co., Northvale, NJ, USA,
[67]Renshape®, "DT 081 Lightweight Filler," Huntsman Advanced Materials Americas Inc., Auburn Hills, MI, USA,
[68]K. Noakes, "Successful Composite Techniques," Osprey Publishing, Londin, UK, 1989.
[69]HexWeb, "Honeycomb Sandwich Design Technology," http://www.hexcelcomposites.com/Markets/Products/Honeycomb/Sand_design_tech/default.htm,
[70]"Epocast® 1511-A/B," Vantico Ltd., Cambridge, UK,
[71]D. E. Packham, "Handbook of Adhesion," John Wiley & Sons, Ltd., The Atrium, West Sussex, UK, 2005.
[72]ASTM D3528, "Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading," Annual Book of ASTM Standards, 2002.
[73]ASTM C297, "Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions," Annual Book of ASTM Standards, 2004.
[74]G. P. Anderson, S. J. Bennett and K. L. DeVries, "Analysis and Testing of Adhesive Bonds," Academic Press, New York, USA, 1977.
[75]ASTM D5961, "Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates," Annual Book of ASTM Standards, 2006.
[76]R. C. Hibbeler, "Mechanics of Materials," Prentice Hall, USA, 1997.
[77]A. M. Whal and G. Lobo, "Stress and Deflections in Flat Circular Plates with Central Holes," Transactions of the ASME, Vol. 52, No. 3, pp. 29-36, 1930.
[78]S. P. Timoshenko and S. Woinowsky-Kreiger, "Theory of Plates and Shells ", McGraw-Hill, London, 1970.
[79]R. J. Roark and W. C. Young, "Formulas for Stress and Strain," McGrawHill, NY, 1975.
[80]H. G. Allen, "Analysis and Design of Structural Sandwich Panels ", Pergamon Press, Oxford, UK, 1969.
[81]J. N. Reddy and C. M. Wang, "Relationship between Classical and Shear Deformable Theories of Axisymmetric Circular Plates," AIAA journal, Vol. 35, No. 12, pp. 1862-1868, 1997.
[82]"ABAQUS/Standard User''s Mannual," HKS, USA, 2002.
[83]D. W. Alspaugh and S. N. Huang, "Minimum Weight Design of Axisymmetric Sandwich Plates," AIAA journal, Vol. 18, No. 12, pp. 1683-1689, 1976.
[84]J. R. Vinson, "The Behavior of Sandwich Structures of Isotropic and Composite Materials," Technomic Pub. Co., Lancaster, Pa., USA, 1999.
[85]D. M. Roche, A. E. T. Schinckel, J. W. V. Storey, C. P. Humphris and M. R. Guelden, "Speed of Light: the 1996 World Solar Challenge," Photovoltaics Special Research Centre, Sydney, Australia, 1997.
[86]L. L. Thompson, P. H. Soni, S. Raju and E. H. Law, "The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car," Motorsports Engineering Conference and Exposition, Dearborn, Michigan, USA, 1998.
[87]D. R. Carroll, "The Winning Solar Car: a Design Guide for Solar Race Car Teams," SAE International, Warrendale, PA, USA, 2003.
[88]S. W. Tsai and H. T. Hahn, "Introduction to Composite Materials," CRC Press, USA, 1980.
[89]R. H. Lock, "1993 New Car Data," Journal of Statistics Education Vol. 1, No. 1, 1993.
[90]A. J. Wang and D. L. McDowell, "Optimization of a Metal Honeycomb Sandwich Beam-Bar Subjected to Torsion and Bending," International Journal of Solids and Structures, Vol. 40, pp. 2085-2099, 2003.
[91]S. Cheng, "Elasticity Solution of Torsion of Sandwich Plates," Journal of the Engineering Mechanics Division, Vol. 94, No. EM2, pp. 605–620, 1968.
[92]T. H. G. Megson, "Aircraft Structures for Engineering Students," Edward Arnold, London, 1972.
[93]W. G. Youngquist and E. W. Kuenzi, "Stresses Induced in a Sabdwich Panel by Load Applied at an Insert," FPL Report No. 1845, Forest Product Laboratory, Forest Service, U.S. Department of Agriculture, 1955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top