跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江國安
研究生(外文):Kwo-An Chiang
論文名稱:工具鋼之雷射表面改質處理
論文名稱(外文):Laser Surface Modification of Tool Steel
指導教授:陳永傳
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:182
中文關鍵詞:雷射相變硬化雷射表面合金化雷射熔覆碳化鎢聚晶鑽石Stellite12鈷基合金金屬碳化物
外文關鍵詞:laser transformation hardeninglaser surface alloyinglaser brazingtungsten carbidepoly crystalline diamondStellite12 cobalt base alloysmetallic carbide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將工具鋼施以雷射表面改質處理,研究雷射加工參數對改質層之溫度分佈、顯微組織及機械性質的影響。論文分為三大部分:
(一)SK3碳工具鋼及SKD61模具鋼的雷射相變硬化處理
將SK3、SKD61鋼材施以雷射相變硬化處理後,從材料表面所經歷的熱歷程來探討雷射相變硬化處理時,過熱度對於相變硬化效果的影響。實施雷射相變硬化處理時,由於加熱速度極快,保溫的時間極短,故需要有適當的過熱度,使組織變為均勻的沃斯田鐵,冷卻後才能有效硬化。當其他條件不變時,相變硬化所需的過熱度會隨著雷射掃描速度的增加而增大。雷射相變硬化所需的過熱度與材料最初的組織有關,組織越粗大或越不均勻,需要的過熱度越大。在本研究中,SK3鋼材雷射相變硬化所需的過熱度,由大至小依序為:退火材、淬火回火材、淬火材。SKD61模具鋼經雷射相變硬化處理後,在相同的功率之下,硬化層的厚度會隨著雷射掃描速度的提升而降低,當功率增加時,硬化深度也會增加,但是硬化深度的增加有一極限,因為功率密度太高時,材料表面溫度便會超過熔點而熔融。影響模具鋼SKD61相變硬化的因素,主要取決於碳化物是否溶入基地中,雖然SKD61沃斯田鐵化溫度與碳鋼無異,但要使硬度提高,勢必要加熱至高於沃斯田鐵化溫度以上,使碳化物充分溶入沃斯田鐵之中,冷卻後才有硬化的效果。由於淬火材的碳化物最小,且分佈最均勻,故經過相同條件的雷射相變硬化處理後,所得到硬度最高。

(二)電鍍硬鉻之SK3工具鋼的雷射表面合金化處理
由於電鍍硬鉻具有良好的耐腐蝕性及高溫抗磨耗的性質,所以一般工業界經常對產品實施硬鉻電鍍處理,然而電鍍硬鉻層較易剝落,且較脆弱,是其美中不足之處。所以針對此問題,本研究將電鍍硬鉻後的工件再施以雷射表面合金化處理,利用雷射加熱,來使表面硬鉻層的鉻元素向內擴散,以期能改善電鍍硬鉻層的易剝落性,當雷射能量密度較低時,合金化處理後表層鉻元素的含量較高,但鉻元素擴散融入的區域範圍較小;能量密度升高時,表層鉻元素含量會降低,但鉻元素擴散融入的區域範圍會變大,而且鉻元素除了在熔融區有溶入底材外,也擴散至熱影響區。以31.83 J/mm2以上的能量密度進行雷射表面合金化處理時,表層會有熔融現象產生,且依能量密度的不同,熔融區的組織有極大的差別,能量密度較大時,晶粒有較充分時間成長,易趨向胞狀與樹枝狀組織,且受溫度梯度影響所呈現的方向性也較明顯。

(三)利用雷射加熱在碳工具鋼表面被覆超硬材料(碳化鎢、鑽石)與鈷基合金
以超硬材料(碳化鎢、鑽石)與鈷基合金為熔覆材料,經由雷射表面被覆處理的方式,在工件表面上進行超硬材料與鈷基合金之複合被覆處理。藉此結合碳化鎢與鑽石的高硬度、耐磨性以及鈷基合金的結合強度、耐蝕性等優點,以進一步提升工件的使用性能,如切削能力、耐磨性、使用壽命等。本研究以雷射表面熔覆的方式將Stellite12鈷基合金與碳化鎢或聚晶鑽石結合,實驗結果顯示,SK3鋼料表面以雷射熔覆碳化鎢與Stellite12鈷基合金時,熔覆層組織主要為σ-Co(FCC之富鈷相)與金屬碳化物,如M23C6, M6C,M7C3等(M=W, Cr, Co)。隨著能量密度的提升,Stellite12合金基地會逐漸形成富鈷的基地,而晶間析出之硬化相會逐漸轉變為富鎢之第3相組織。由於富鎢之第3相組織具有優異的耐磨耗性,故碳化鎢與Stellite鈷基合金複合熔覆層之耐磨性比Stellite12鈷基合金熔覆層更好。在雷射熔覆聚晶鑽石與Stellite12鈷基合金方面,以雷射熔覆聚晶鑽石與Stellite12鈷基合金後,其熔覆層組織主要為鑽石與Co-Cr-W-C之四元合金,鑽石顆粒會與基地中的金屬元素相結合形成M7C3金屬碳化物,而降低鑽石與熔融金屬的介面能,且能以化學鍵結方式將鑽石包裹在鈷基合金內,故其結合強度高。將經過雷射熔覆聚晶鑽石與鈷基合金後的試片與市售電鑄鑽石砂輪相互對磨,試片表面的鑽石並沒有脫落,可見其結合強度比以電鑄方式結合者來得大,而且鑽石表面因其自銳性的影響,形成更多的切削角度。由耐磨耗試驗結果得知,熔覆層的耐磨性隨著聚晶鑽石的粒徑及添加量的增加而增加。此熔覆層是利用聚晶鑽石與鈷基合金相互產生的碳化物鍵結使聚晶鑽石緊緊鑲於鈷基合金內,以避免在磨耗時脫落或使裂縫延伸擴大,因而能有優異的耐磨耗性
In this paper, the tool steels treated by laser surface modification was proposed. The influences of the modified coatings with different laser working parameters, including temperature distribution, micro-structure and mechanical properties by laser surface modification were investigated. There are a total of three topics discussed as following:
1.Laser transformation hardening of SK3 and SKD61 steel
When the laser was focused on the steel, the temperature of the steel was raised. Due to the effect of superheating, the critical phase transformation temperature in laser transformation hardening became higher than the austenized temperature in traditional quenching due to the higher heating rate and the shorter heating time by laser heating.
However, the critical phase transformation temperature of steel increased with increasing laser travel speed. The original structure of steel caused the different critical phase transformation temperature, the effect of superheating increased when the laser was treated on the steel which has bigger or more inhomogeneous grain structure. In this paper, the temperature of superheating of SK3 steel was increased compared with in the quenched, quenched-tempered and as-received conditions. When the laser was focused on the SKD61 steel, the hardened layer of the steel was decreased with increasing the laser travel speed and increased with increasing the laser input power.
However, it has a limitation in increasing the hardened layer with increasing the laser input power. Laser heating of SKD61 steel usually causes the formation of a melting layer on the steel surface which is of poor thermal conductivity and diffusivity.
Although the austenized temperature of SKD61 makes no different compared with the carbon steel, in order to raising the hardness of laser hardened layer, the heating temperature of SKD61 should be higher than the austenized temperature which causing the metallic carbides fully dissolved into the matrix when austening .
When the laser was focused on the SKD61 steel, the hardness of modified layer was higher in the quenched condition which has smaller metallic carbides and more homogeneous grain structure than quenched-tempered and as-received conditions for the same laser working parameters.

2.Laser Surface Alloying of Chromium-Electroplated Films on Steel
Laser surface alloying is a process for altering surface elemental compositions by using the energy of a high-power laser to melt a thin layer at the surface of a bulk material, while simultaneously adding alloying elements, to effect, upon freezing, an alloy or a compound. In this paper, we characterize the surface alloys of chromium on an SK3 steel substrate produced using different laser powers, travel speeds, and energy densities. We investigated the behavior of the rapidly solidifying laser-alloyed Cr layer, including its dissolution, distribution, and microstructure, using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD). Several significantly different characteristics were present in the microstructures of the laser-alloyed chromium layers when the material was subjected to different laser energy densities. The alloy layer, which is defined by measurements of the diffusion depth and content of the alloy element—in this case, Cr—can be controlled by the laser energy density. The dissolution of Cr decreases but the diffusion range increases upon increasing the laser energy density. Laser surface alloying of Chromium-Electroplated films on steel causes the formation of a melting layer on the steel surface when the laser energy density is over 31.83 J/mm2 and the structure of the melt layer is different with changing the laser energy density. Due to the growth of grain structure with sufficient time by higher laser energy density, the structure of the melt layer tends to form a cell like or dendritic structure and the orientations of growth is apparently influenced with the gradient of temperature.

3. Laser brazing of super hard materials (tungsten carbide and poly crystalline diamond grits) with stellite12 alloy
Stellite12 cobalt base alloys with different WC or diamond grits contents were deposited on SK3-carbon tool steel by laser cladding. The behavior of WC particulates or diamond grits, including dissolution and distribution, and the microstructure of composite coatings with rapid solidification were investigated.
Several significantly different solidified microstructures were characterized by dendrites, eutectics, faceted dendrites and the retained WC particles in the laser cladding WC + Stellite12 coatings, under different laser energy densities. When WC was melted and dissolved into the Stellite12 melt pool, the basic structure of solidification, characterized by the matrix and faceted dendrites in various shapes, and the contents of the faceted dendrites remained nearly identical. The faceted dendrites contained the majority of W as well as some Cr, Co while more Cr and Co were located in the matrix. The X-ray diffraction analyses indicated the existence of σ-Co, M23C6, M6C and M7C3 (M=W, Cr, Co) in the Stellite12 with different WC contents when deposited on substrates by laser cladding. The faceted dendrites provided the coatings with excellent resistance during dry sliding wear test. A higher content of WC gave higher volume fractions of faceted dendrites that imparted excellent wear resistance to the coating.
The X-ray diffraction analyses indicates the existence of σ-Co(FCC matrix enriched with cobalt), the metallic compound carbides such as M23C6, M6C and M7C3(M=W, Cr, Co, Fe), and poly crystalline diamond in the laser brazed diamond grits with Stellite12 alloy . Metallurgical bonds are formed between poly crystalline diamond grits and the matrix of stellite12 alloys that provide better bonding strength than electro-plated diamond wheel and the diamond grits tend to form more cutting angles due to self-sharpening during dry sliding wear with the electro-plated diamond wheel. The diamond grits provide the coating with excellent resistance during dry sliding wear test. A higher content and bigger size of diamond grit impart better wear resistance to the coating.
第一章 序論………………………………………………. 1
1.1 前 言…………………………………………… 1
1.2 雷射表面改質處理之簡介……………………………….. 2
1.2.1雷射相變硬化處理…………………………..……….. 2
1.2.2雷射表面被覆處理…………………..………. 2
1.3 研究背景…………………………………………………….. 3
1.3.1精密表面改質處理日趨重要…………………… 3
1.3.2切削刀具的發展邁向超硬材料的新時代……………… 4
1.4 研究目的………………………………………..………… 5
第二章 文獻回顧……………………………….……………. 9
第三章 實驗原理與方法…………..………………..………. 18
3.1 雷射光的光束模式……………………………..……… 18
3.2 金屬的表面狀況對雷射光的吸收率之影響…….. …….. 18
3.3 溫度場的模擬………………………………….. …….. 19
3.3.1 1D固定熱源半無窮板厚計算溫度場之數學處理方法.. 19
3.3.2 3D移動熱源計算溫度場之數學處理方法………… 21
3.4 雷射表面被覆處理……………………….. …….. 23
3.4.1雷射表面被覆之原理……………………… 23
3.4.2 雷射被覆合金的選擇與塗層之設計…………… 24
3.4.3 雷射被覆層的組織性質…….…………..………… 25
3.5 鑽石合成與石墨化……………….….. ……… 26
3.6 聚晶鑽石的被覆處理與被覆合金選擇……..……………… 28
3.7 磨耗理論……………………….. ……... 29
3.8 實驗設備………………………………. ……… 32
3.9研究方法與進行步驟…………………….. ……… 33
3.9.1雷射相變硬化處理之方法………………… 33
3.9.2雷射表面合金化處理的方法…………………… 35
3.9.3以雷射被覆碳化鎢與stellite12合金之方法 37
3.9.4以雷射被覆聚晶鑽石與Stellite合金的方法 38
第四章 結果與討論…………………. ……… 41
4.1 高碳工具鋼SK3之雷射表面相變硬化處理. …….. 41
4.1.1 雷射加工參數對硬化深度的影響….. ……… 41
4.1.2 雷射能量密度對硬化層深度的影響….. ……… 41
4.1.3 雷射能量密度對硬化層硬度分佈的影響…….. ……… 42
4.1.4雷射相變硬化處理後之顯微組織………… 43
4.1.5溫度場的模擬與硬化深度預測及探討……… 44
4.1.6雷射光束有效半徑之估算…………………… 46
4.1.7溫度場之計算與修正………………………………… 47
4.1.8原材(退火材)與淬火回火材的臨界硬化溫度與過熱度. 49
4.1.9以動力學強度探討雷射熱處理時,SK3原材(退火材)與淬火回火材表面所經歷的熱歷程與表面硬化的關係…..….…………… 50
4.2 模具鋼SKD61之雷射表面相變硬化處理………… 54
4.2.1雷射加工參數對硬化層厚度的影響…………………… 54
4.2.2雷射能量密度對硬化層厚度的影響………………… 54
4.2.3雷射加工參數對不同組織的SKD61之硬化層硬度分佈的影響.55
4.2.4雷射相變硬化處理後之顯微組織……………… 55
4.2.5溫度場的模擬與硬化深度探討…………………… 56
4.2.6淬火材實施雷射相變硬化時之溫度場分佈………… 57
4.2.7淬火材與原材之臨界硬化溫度與過熱度……… 58
4.3電鍍硬鉻薄膜之SK3鋼材的雷射表面合金化處理………. 58
4.3.1硬化層型態的分類…………………………………… 59
4.3.2雷射功率與掃描速度對熔融區及熱影響區深度的影響… 59
4.3.3雷射加工參數對硬度分佈的影響…………… 60
4.3.4雷射加工參數對表層鉻元素含量的影響……………… 60
4.3.5雷射表面合金化處理後之顯微組織……………… 61

4.3.6雷射表面合金化處理後之SEM顯微組織觀察與EDAX元素分析63
4.4以雷射被覆碳化鎢與鈷基合金的表面改質處理…. ……… 64
4.4.1 Stellite12鈷基合金之被覆處理……………. ……… 64
4.4.2雷射能量密度對鈷基合金被覆層之元素含量與硬度分佈的影響 65
4.4.3雷射表面碳化鎢與Stellite12鈷基合金的複合被覆處理65
4.4.4雷射能量密度對碳化鎢與鈷基合金熔覆層之組織結構的影響66
4.4.5碳化鎢與Stellite合金的比率對被覆層的組織結構之影響67
4.4.6碳化鎢與Stellite合金複合被覆層之耐磨性………. 67
4.5以雷射被覆聚晶鑽石與鈷基合金的表面改質處理…….. 69
4.5.1粒徑0.05mm聚晶鑽石與Stellite12合金的熔覆處理……. 70
4.5.2粒徑0.5mm聚晶鑽石與Stellite12合金的熔覆處理…… 70
4.5.3 XRD繞射分析………………………….………. 71
4.5.4聚晶鑽石與鈷基合金之熔覆處理層的組織結構…… 71
4.5.5聚晶鑽石與鈷基合金之熔覆層的耐磨性……… 72
第五章 結論…………………………………………………. 74
參考文獻……………………………………………….. 79
表錄………………………………………………. 85
圖錄………………………………………………. 95
1.黃振賢,“金屬熱處理”,文京圖書,民國七十六年.
2.Joe. E. Miller ,“Laser hardening at Saginaw Steering Gear”,Metal Processing, May,1977.
3.Charles Wick,“ Laser Hardening, Manufacturing Engineering”, June , 1976.
4.賴文郎,“雷射熱處理及其應用”,金屬熱處理, 18期, 民國76年, pp.31-37.
5.敖仲寧,“金屬材料的雷射加工”,金屬熱處理, 28期, 民國79年, pp.5-19.
6.陳贊仁,“雷射表面硬質塗層改善模具耐磨耗性能”, 金屬熱處理, 43期, 民國83年, pp.102-110.
7.丁勝懋, “雷射加工導論”,中央圖書出版社,第3版,民國80年.
8.韋孟育, “雷射表面處理鋼材之製程及疲勞裂痕成長特性”, 台灣大學, 民國79年.
9.周敏傑,“鋼鐵材料的表面硬化及包覆處理之研究”, 台灣大學, 民國75年.
10.Bhushan and Bharat, Hand book of Tribology, McGraw-Hill, New york, 1991.
11.D. C. Xiao, M. Ellis, W. M. Steen, “Laser Cladding of Lead Bronze”, Laser material processing, pp.913-922.
12.高鄂, “碳化鎢入門“,徐氏基金會,民國71年,pp.1.
13.Ralph W, Stevenson, “Cemented Carbides”, Metal Handbook, 9th edition, vol.7, ASM, 1985, pp.773-783.
14.Neil J, Dennis D, R. J. Henry, “Tool Materials”, Metal Handbook, Vol.11, ASM, 1985, pp.18.1-18.6.
15.粉末冶金技術手冊,中華民國冶金協會, 民國79年, pp.38-92.
16.賴耿陽,粉末冶金學概論,復漢出版社, 民國79年, pp.194-221.
17.D. Lou,J. Hellman, D. Luhulima, J. Liimatainen, V. K. Lindroos,”Interactions between Tungsten Carbide (WC) Particulates and Metal Matrix in WC-reinforced Composite”, Materials Science and Engineering A, Vol.340, 2003, pp.155-162.
18.Arata , “CO2 Laser Absorption Characteristics of Metal, Plasma, Electron and Laser Bean Technology”, pp.234-345.
19.Mazumder , “ An Axis Symmetry Model for Convection in Laser Melting Pool”, Laser Processing of Materials, pp.3-16.
20.P. A. A. Khan, T. Debroy,“ Determination of Weld Pool Temperature During Laser Welding of AISI 202 Stainless Steel”, Laser Processing of Materials, pp.71-82.
21.Mazumder,“ A Study of the Mechanism of Laser Cladding Process”, Laser Processing of Materials, pp.35-48.
22.M. R. James, D. S. Gnanmuthu, R. J. Moore,“ Residual Stress State of Laser Melted Surface”, Laser Processing of Materials, pp.131-140.
23.C. H. Chen , M. K. Keshvan,“Wear of Laser Processed Cast Iron”, Laser Processing of Materials, pp.183-197.
24.Mazumder,“Laser Surface Alloying of Steel with Cr-Mn-C for Enhanced Wear Properties”, Laser Processing of Materials, pp.199-200.
25.M. .F. Ashby,“Modelling the Laser Transformation Hardening of Steel”, Laser Processing of Materials, pp.225-234.
26.W. M. Steen,“Heat Transfer Model for CW Laser Processing”, J. App. Phys, Feb, 1980, 51, pp.946-946.
27.W. M. Steen.,“Mathematical Modeling of Laser Material Interactions”, Laser Material Processing, pp.156-170.
28.M. A. Bramson , “Infra-Red Radiation”, Hand Book for Applications , Plenum Press, New York,1968.
29.M. A. Ashby, E. Easterling, "The Transformation Hardening of Steel Surface by Laser beam“, Acta Metal, Vol.32, 1984, pp.1935-1948.
30.M. A. Ashby, E. Easterling, "A Second Report on Diagrams of Microstructure and Hardness for Heat Affected Zones in Welds“, Acta metal, Vol.32,1984, pp.1949-1962.
31.M. A. Ashby, E. Easterling, "Laser Transformation Hardening of Steel“, Acta Metal, Vol.34, 1986, pp.1533-1543.
32.G. J. Bruck,“ High-Power Laser Beam Cladding”, Journal of Metals, 1987, pp.10-13.
33.K. Nagarathnam, K. Komvopoulos,“Microstructural Characterization and In situ Transmission Electron Microscopy Analysis of Laser Processed and Thermally Treated Fe-Cr-W-C Clad Coating”, Metallurgical Transaction A, Vol. 24,1993,pp.1621-1629.
34.K. Nagarathnam, K. Komvopoulos,“ Microstructural and Micro-hardness Characteristics of Laser Synthesized Fe-Cr-W-C Coating”, Metallurgical transaction A, Vol. 26,1995,pp.2131~2137.
35.Mazumder,“Laser Heat Treatment : The State of Art”, J. of Metals, Vol. 35, 1983, pp.18-26.
36.J. Mazumder, “Laser Welding”, Laser Material Processing, edited by M.Bass, 1983.
37.Jogender Singh, J. Mazumder,“Microstructure and Wear Properties of Laser Clad Fe-Cr-Mn-C Alloys“, Metallurgical and Materials The Transactions A, Vol.18A, 2000, pp.313-321.
38.A. Frenk, M.Vandyoussefi, J.D. Wagniere, A. Zryd and W.Kurz,“Analysis of Laser-Cladding Process for Stellite on Steel”, Metallurgical And Materials The Transactions B, Vol.28B, 1997, pp.501-508.
39.Andre Frenk, Nicolas Henchoz and Wilfried Kurz, "Laser Cladding of a Cobalt-Based Alloy: Processing Parameters and Microstructure", Z. Metallkd. Vol.84, No. 12, 1993, pp.886-892.
40.Jogender Singh, J. Mazumder, "The Constitution and Microstructure of Laser Surface-Modified Metals“, JOM, Sep., 1992, pp.8-14.
41.張書碩, 陳鈞, “鈷基合金雷射包覆製程之衝擊磨耗特性研究”,國立臺灣大學材料科學與工程學研究所碩士論文, 2002, pp.25-56.
42.Gnanamuthu D S, “Source Book on Application of the Laser in Metal Working”, ASM,1981,pp.324-329.
43.Tucker T R,” Laser Processed Composite Metal Cladding for Slurry Erosion Resistance”, Thin Solid Films, Vol.118, pp.73-91.
44.Abbas G,” Laser Produced Composite Metal Cladding”, SPIE,Vol.11,High Power Laser and Laser Machining Technology,1989,pp.232-236.
45.Abbas G, W. M. Steen,” Wear Studies of Variable Composition Stellite-SiC Laser Clad Desposites” , Key Engineering Materials, Vol.46-47, 1990, pp.447-454.
46.Nowotony St, Techel A, “Microstructure and Wear Properties of Laser Clad Carbide Coating”, Laser Materials Processing ,Vol.23,1993, pp.985-993.
47.Cadnes M, Vijande R, “Wear Behavior of Laser Cladding and Plasma Sprayed WC-Co Coatings”, Wear, Vol.212, 1997, pp.244-253.
48.Douglas E, Jogender Singh, “Laser Clad Composite Coating”, Advanced Material &Processing, 200, pp.41-44.
49.Guo, Jingjie, Li, Bangsen, “Microstructure Change of Laser Surface Remelting WC-Co Coating”, Transactions of Nonferrous Metals Society of China, Vol. 5,No.4, 1995, pp.142-145.
50.Yares''ko, S.I., Kobeleva, T.K, “Changing a Fine Structure of Carbide Phase of the Hard Alloy WC-Co under Laser Processing”, Sverkhtverdye Materialy, No.1, Jan-Feb, 1996, pp. 52-57.
51.Bahadur, Shyam, Chien-Nan, ”Laser Surface Melting of Carbide Coatings and Their Tribological Behavior”, ASTM Special Technical Publication, No.1278, 1996, pp. 35-53.
52.Gruenenwald B. Bischoff, E, “Laser Surface Alloying of Case Hardening Steel with Tungsten Carbide and Carbon”, Materials Science and Technology, Vol. 8,No.7, 1992, p 637-643.
53.劉昌政, 蔡顯榮, “雷射熔融304L不�袗�粉末與WC粉末之機械性質研究”, 國立台灣科技大學機械工程系碩士論文,民國90年, pp.1-35.
54.Artyukhov, V.P., Pruss, O.P., “Investigation of Brazing Processes of the Diamond-hard Alloy Cutters”, Sverkhtverdye Materialy, No2, Mar-Apr, 1997, pp. 38-43.
55.Wu, Z.B. ,Xu, H.J., Xiao, B. ,”Experimental Investigation on Induction Brazing of Diamond Grinding Wheel”, Transactions of the China Welding Institution, Vol.22, n 1, February, 2001, pp. 24-26.
56.Chattopadhyay, A.K. , Hintermann, H.E. ,”Performance of Metal-Bonded Single-Layer Diamond Abrasive Tool”, NIST Special Publication, No.847, Jun, 1993, pp. 33-41.
57.Li, Wen-Chung, Liang, Cheng; Lin, Shun-Tian ,”Interfacial Segregation of Ti in the Brazing of Diamond Grits onto a Steel Substrate Using a Cu-Sn-Ti Brazing Alloy”, Metallurgical and Materials Transactions A,Vol. 33, No.7, July, 2002, pp.2163-2172.
58.Huang, Sheng-Fang, Tsai, Hsien-Lung, Lin, Shun-Tian, ”Laser Brazing of Diamond Grits Using a Cu-15Ti-10Sn Brazing Alloy”, Materials Transactions, Vol. 43, No.10, October, 2002, pp. 2604-2608.
59.江衍坤, 林舜天, “大尺寸鑽石工具製程研發及銲料改良”,國立台灣科技大學機械工程系碩士論文, 2002, pp.2-90.
60.陳維燕, 陳適範, “以銅-鋁-鈦合金硬銲單層表面塗佈鑽石工具之微結構分析”,國立台北科技大學材料及資源工程系碩士論文, 2002, pp.2-50.
61.Chattopadhyay, A.K., Chollet, L., Hintermann, H.E. , ”Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy under Argon Atmosphere”,Surface & Coatings Technology, Vol.45, No.1-3, May 15, 1991, pp. 293-298.
62.Suzumura, Akio, Yamazaki, Takahisa , ”Solidification Phenomena and Bonding Strength at the Interface of Diamond and Active Metal Brazing Filler” ,Quarterly Journal of the Japan Welding Society, v 12, n 4, Nov, 1994, pp. 509-514.
63.E. W. Kreutz, “High Power Laser” ,Pergamon Press,1989,pp.159-191.
64.R. Davis, Davis and Associates, "Hard Facing, Weld Cladding and Dissimilar Metal Joining", ASM Handbook. Vol.6, 10th ed., 1990,pp. 789-829.
65."The Selection of Hard Facing Alloy", ASM Handbook, Vol.1, 8th., 1961, pp.820-833.
66.Glozman and M. Bamberger, “PhaseTransition and Microstructure of Laser Induced Steel Surface Alloying”, Metallurgical and Materials Transactions A, 1997, Vol.28A, pp.1699-1703.
67.Howard B. Gary, Regents, Prentice Hall, "Failure Analysis, Repair Welding and Surfacing", Modern Welding Technology, 3 th, pp.685-706.
68.Andre Frenk, Nicolas Henchoz and Wilfried Kurz , Laser Cladding of a Cobalt-Based Alloy, Z.metallkd, A173, 1993, pp.339~342.
69.Arvind Agarwal, Narendra. B. Dahotre, “Mechanical Properties of Laser Deposited Composite Boride Coating Using Nanoindentation”, Metallurgical and Materials Transactions A, Vol.31A, 2000, pp.401-407.
70.G. J. Bruck, “High-Power Laser Beam Cladding”, Journal of Metals, Feb, 1987,pp.10-13.
71.宋健民,”超硬材料”,全華科技圖書股份有限公司,民國89年,pp.2-38.
72.莊坤榮, 郭崑謨,“台灣鑽石工具業產銷之分析“ , 國立政治大學企業管理研究所碩士論文, 1984, pp.23-69.
73.Team of Authors from the Debeers Diamond Reasearch Laboratory, “Advances in the Brazing of Syndrill”, Industrial Diamond Review, 1987, pp.6-17.
74.M. W. Bailey, R. Garrard, and H. O. Juchem, “Characteristics of Diamond and Their Effect on Grinding Behavior.”, Diamond Technology, Hard Core Application from Western Saw, pp 10-19.
75.K. Przyklenk, “Diamond Impregnated Tools-Uses and Production”, Tool Making, 1993, pp 192-195.
76.陸永忠, 周瑞麟,“金屬基鑽石鋸片”,粉末冶金會刊第20卷第1期, Vol.3, 1995,pp.25-31.
77.M. Igharo and J. Russell, “Development of Diamond Impregnated Cutting Tools ”, Surface Engineering, Vol. 10, No. 1, 1994, pp 52-55.
78.D. Dwan , “Production of Diamond Impregnated Cutting Tools”, Powder Metallurgy, Vol. 41, No.2, 1998, pp 84-86.
79.Owers , “Industrial Diamond: Applications, Economics and a View to the Future”, Industrial Diamond Review, No. 3, 2000, pp. 176-181.
80.宋健民, ”鑽石合成”,全華科技圖書股份有限公司,民國89年,pp.2-96.
81.Y. S. Liao and S. Y. Luo, “Effect of Matrix Characteristics on Diamond Composites”, Journal of Materials Science, Vol. 28, 1993, pp. 1245-1251.
82.R. L. Sanda and C. R. Shakespeare, “Powder Metallurgy: Practice and Applications”, Diamond Tools, 1966, pp. 154-158.
83.Y. Z. Hsieh, J. F. Chen, and S. T. Lin, “Pressure Less Sintering of Metal-Bonded Diamond Particle Composite Blocks”, Journal of Materials Science, Vol. 35, 2000, pp 5383-5387.
84.E. D.Kizikov, “Vacuum Technology for Diamond Tool Making”, Industrial Diamond Review, Vol.1, 1991, pp 20-23.
85.Y. F. Zhang, F. Q. Zhang, and G. G. Chen, “A Study of Phase Transformation between Diamond and Graphite in P-T Diagram of Carbon”, Carbon, Vol. 12 No.8, pp 1415-1418.
86.M. L. Santella, “A Review of Techniques for Joining Advanced Ceramics”, Ceramic Bulletin, n. 71, 1992, pp. 947-954.
87.F. Tetsuo, Y. Yasuhisa, and O. Atsumasa, “Application of Low Melting Cu-P System Alloy as a Bonding Material for Diamond Sintered Tools”, Journal of the Japan Society of Powder and Powder Metallurgy, vol. 40, No. 1, 1993, pp. 58-61.
88.M. Kh. Shorshorov, V. V. Kudinov, S. M. Savvateeva, A. A. Semerchan, Yu.A. Sadkov, and S. G. Nuzhdina, “Production of Diamond Compacts for Design Application”, Soviet Journal of Superhard Materials, vol. 7, no. 2, 1985, pp. 7-10.
89.Evens, M. Nicholas, and P. M. Scott, “The Wetting and Bonding of Diamonds by Copper-Tin-Titanium Alloy”, Industrial Diamond Review, No. 9, 1997, pp.306-309.
90.Z. Lin and R. A. Queeney, “Interface Bonding in a Diamond/Metal Matrix Composite”, Proceedings of the 1988 International Powder Metallurgy Conference, MPIF, Princeton, N. J., USA, 1988, pp. 443-449.
91.V. P. Chepelova, “Compaction of Metallic and Diamond-Metal Composites During Sintering”, Soviet Journal of Superhard Materials, Vol. 6, No. 2, 1984, pp. 65-69.
92.M. Howe, “Bonding, Structure, and Properties of Metal/Ceramic Interfaces: Part 1 Chemical Bonding, Chemical Reaction, and Interfacial Structure”, International Materials Reviews, Vol. 38, No. 5, 1993, pp. 233-255.
93.Karl-Heinz Zum Gahr, “Microstructure and Wear of Materials”, Elsevier Science, New York, 1987, pp. 84-108.
94.K. G, Budinski, “Surface Engineering for Wear Resistance”, Prentice Hall, New Jersey, 1988, pp.16.
95.Ernest Rabinowicz, “Friction and Wear of Materials”, Wiley, John & Sons, New York, 1995, pp. 128- 132.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3、方燕玲,<金融業併購法律實務運作>,《實用月刊》,第三二七期,台北,實用稅務,2002.03。
2. 5、邱駿彥,<勞動契約訂定階段之相關法律問題>,《華岡法粹》,第三十期,台北,文化大學法律學系,2003.12。
3. 6、林炫秋,<事業單位轉讓與勞動契約之變動>,《政大法學評論》,第六十二期,台北,政大法律學系,1999.12。
4. 7、林仁光,<企業併購與組織再造規範制度之重新檢視>,《月旦民商法雜誌》,創刊號,台北,元照,2003.09。
5. 9、林更盛,<控制性持股關係對雇主概念及其責任的可能影響>,《律師雜誌》,台北,台北律師公會,第二九一期,2003.12。
6. 11、林更盛,<論作為爭議手段之勞工集體休假-評最高法院八十四年台上字第一0七四號判決>,《月旦法學雜誌》,第六十期,台北,月旦,2000.05。
7. 12、林更盛,<論勞工之集體請辭>,《全國律師》,台北,全國律師雜誌社,2000.05。
8. 13、林更盛,<工資的迷思:恩惠性給予-評最高法院八十八年台上字第一六三八號判決>,《月旦法學雜誌》,第六十七期,台北,月旦,2000.12。
9. 14、林更盛,<法學方法在勞動法上的可能運用-一個初步的反思>,《東海大學法學研究》,第二十三期,台中,東海大學法律學系,2005.12。
10. 16、郭秋永,,<科學哲學中的兩種因果解析>,《政治與社會哲學評論》,第四卷,台北,巨流,2003.03。
11. 19、黃茂榮,<僱傭契約>,《植根雜誌》,第十九卷,第六期,台北,植根,2003.06。
12. 20、焦興鎧,<論歐洲聯盟勞工及勞資關係法制之建構>,《政大法學評論》,第六十五期,台北,政治大學法律學系,2001.03。
13. 21、黃程貫,<我國罷工合法要件之檢討>,《月旦法學雜誌》,第一0七期,台北,元照,2004.04。
14. 22、楊通軒,<勞動者的概念與勞工法>,《中原財經法學》,第六期,桃園,中原大學財經法律學系,2001.07。
15. 23、楊通軒,<歐洲聯盟勞工法律之研究>,《中原財經法學》,第七期,桃園,中原大學財經法律學系,2001.12。