跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許嘉政
研究生(外文):Chia-Cheng Hsu
論文名稱:氣相燃燒合成SiO2及TiO2奈米複合氧化物之研究
論文名稱(外文):The Formation of SiO2 and TiO2 Nano-size Composite Materials in Gas Phase Combustion Synthesis
指導教授:馬小康馬小康引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:113
中文關鍵詞:TiO2-SiO2複合氧化物前置物TTIPHMDSORutile
外文關鍵詞:Titania/silica complex oxidesPrecursorsTTIPHMDSORutile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係於預混甲烷火焰,加入TTIP和HMDSO前置物以燃燒合成方式形成TiO2-SiO2之複合氧化物。實驗條件包括調整當量值、氧氮比和不同前置物濃度,從火焰觀察、火焰溫度、產物晶相和顆粒大小,探討TiO2-SiO2複合氧化物之形成機制。
在火焰觀察方面,可經由調整兩種前置物(Precursors)之不同比例得知火焰顏色變化,只受TTIP影響,火焰顏色會由藍色轉為紅色,而在燃燒反應中HMDSO並不會使火焰顏色變化。在火焰溫度方面,隨著兩前置物的添加,火焰溫度會比之前未加入前置物之火焰溫度還低,這是由於兩前置物之加入燃燒反應為吸熱反應,其中HMDSO之吸熱反應大於TTIP。
在晶相觀察方面,當固定兩前置物之流量比時,在任何當量值、氧氮比和收集高度時,燃燒合成TiO2-SiO2之複合氧化物在XRD之晶相觀察下可知TiO2-SiO2複合氧化物中之TiO2全為Rutile相,而在當量比、氧氮比和收集高度之提升時,則會造成合成TiO2-SiO2複合氧化物中Rutile的含量的增加。在TEM之觀察下,可知TiO2-SiO2複合氧化物中無定形的SiO2均勻地包覆在TiO2顆粒表面形成核殼結構,加入少許SiO2會有效抑制TiO2晶粒的成長,當量值和氧氮比之提升,而造成火焰溫度的提高,也都會使TiO2晶粒的粒徑變大,而收集高度的提高也會使TiO2晶粒的粒徑變大。
The study focuses on premixed CH4 +O2+N2 flame and adjusted ratio of TTIP/HMDSO for composing Titania/silica complex oxides (TiO2-SiO2). The experimental conditions include the equivalence ratio, the ratio of oxygen/nitrogen, the collecting height and the concentration of different precursors. The composing Titania/silica complex oxides mechanisms are studied by the flame observation, flame temperature, crystalline phase and particle sizes.
Flame color is affected by adjusting the ratio between two precursors. The main reason is that the TTIP changes the flame color from blue to red. However, HMDSO does not change the flame color. The higher equivalence ratio and the oxygen/nitrogen ratio cause higher flame temperatures. When two precursors are added, the flame temperature decreases due to both precursors causing endothermic reactions.
When the equivalence ratio, the ratio of oxygen/nitrogen and collecting height increase, the composite result of TiO2 phase of titania/silica complex oxides (TiO2-SiO2) is Rutile phase. Also, the amount of Rutile is increasing. In the aspect of particle size analysis, the higher equivalence ratio and the oxygen percentage cause temperature rise and more collision chances that lead to bigger particle size. Heterogeneous nucleation of SiO2 on the surface of TiO2 is the main reason of core-shell nanocmposites formation. In addition, the size of TiO2 nanoparticles of titania/silica complex oxides increases with the collecting height in the flame.
口試委員審定書 I
誌謝 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 XII
符號表 XIII
第一章 導論 - 1 -
1.1前言 - 1 -
1.1.1 奈米材料種類及應用 - 1 -
1.1.2奈米材料特性 - 4 -
1.1.3 奈米複合材料種類及特性 - 6 -
1.1.4奈米科技產業 - 8 -
1.2研究背景 - 9 -
1.3研究目的 - 12 -
第二章 化學反應機構原理與相關文獻回顧 - 14 -
2.1 化學反應機構簡介 - 14 -
2.1.1化學反應機構的基本簡介 - 14 -
2.1.2反應機構與化學反應速率的關係 - 15 -
2.1.3甲烷燃燒化學反應機構的介紹 - 16 -
2.2 文獻回顧 - 18 -
2.2.1 二氧化鈦之相關文獻 - 18 -
2.2.2 二氧化矽之相關文獻 - 23 -
2.2.3二氧化鈦與二氧化矽複合氧化物之相關文獻 - 27 -
第三章 實驗研究方法 - 29 -
3.1實驗架構與說明 - 29 -
3.1.1實驗基本架構 - 29 -
3.1.2實驗操作參數 - 29 -
3.1.3 TTIP和HMDSO之介紹 - 31 -
3.2燃燒設備 - 31 -
3.2.1改良式預混式燃燒器 - 31 -
3.2.2 燃料輸送系統 - 32 -
3.2.3 其他儀器設備 - 33 -
3.3 儀器校正 - 34 -
3.3.1 浮球式流量計之校正 - 34 -
3.3.2 熱電偶之校正 - 35 -
3.4 實驗步驟 - 36 -
3.4.1實驗前之準備 - 36 -
3.4.2火焰溫度場之量測及現象觀察 - 37 -
3.4.3燃燒產物的收集與分析 - 37 -
第四章 結果與討論 - 38 -
4.1前置物之揮發量量測 - 38 -
4.2火焰之觀測 - 38 -
4.2.1未加入前置物之火焰觀測 - 38 -
4.2.2加入前置物之火焰觀測 - 39 -
4.3火焰溫度之分佈 - 40 -
4.3.1當量值對火焰溫度之影響 - 40 -
4.3.2氧氮比對火焰溫度之影響 - 41 -
4.3.3前置物對火焰溫度之影響 - 41 -
4.4產物晶相之分析 - 43 -
4.4.1 當量比和氧氮比對單一前置物之晶相分析 - 44 -
4.4.2調整前置物比例對產物晶相之影響 - 45 -
4.4.3當量值對產物晶相純度之影響 - 46 -
4.4.4氧氮比對產物晶相純度之影響 - 46 -
4.4.5產物收集高度對產物晶相之影響 - 47 -
4.5 產物粒徑之分析 - 47 -
4.5.1調整前置物比例對產物粒徑之分析 - 47 -
4.5.2當量值對產物粒徑之影響 - 49 -
4.5.3氧氮比對產物粒徑之影響 - 49 -
4.5.4 粉末收集高度對產物徑粒之影響 - 50 -
第五章 結論與建議 - 51 -
5.1結論 - 51 -
5.1.1前置物之揮發量量測 - 51 -
5.1.2 火焰之觀測 - 51 -
5.1.3 火焰溫度之量測 - 51 -
5.1.4產物晶相之分析 - 52 -
5.1.5產物之粒徑分析 - 52 -
5.2建議 - 53 -
參考文獻 - 54 -
圖目錄 - 61 -
表目錄 - 94 -
附錄 - 106 -
A.電子流量計之保證書 - 106 -
B.相關精密儀器的介紹 - 107 -
B.1 XRD,X-ray diffraction(X射線粉末繞射儀) - 107 -
B.2 TEM(穿透式電子顯微鏡) - 109 -
1.范光照、黃漢邦、陳炳煇、張所鋐、顏家鈺,”奈米工程概論”,2003。
2.Skandan, G., Chen, Y. J., Glumac, N., and Kear, B. H., “Synthesis of oxide nanoparticles in low pressure flames,” NanoStructured Materials, 11(2): 149-158, 1999. 1
3.Wooldridge, M.S., “Gas-phase combustion synthesis of particles,” Progress Energy Combustion Science, 24: 63-87, 1998.
4..Roco, M. C., “Reviews of national research programs in nanoparticle and nanotechnology research in the U.S.A.,” Journal of Aerosol Science, 29(5/6): 749-760,,1998.37
5..Kruis, F. E., Fissan, H., and Peled, A., “Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - a Review;” Journal of Aerosol Science, 29: 511-535, 1998. 3
6..Pratsinis, S. E., “Flame aerosol synthesis of ceramic powders,” Progress Energy Combustion Science, 24: 197-219, 1998. 5.
7.Stark, W. J., and Pratsinis, S. E., “Aerosol flame reactors for manufacture of nanoparticles,” Powder Technology, 126: 103-108, 2002. 13. 5.
8.Glassman, I., Davis, K. A., and Brezinsky, K., “A Gas-Phase Combustion Synthesis process for Non-Oxide Ceramics,” 24th Symposium (International) on Combustion/The Combustion Institute, pp.1877-1882, 1992.
9.Chagger, H. K., Hainsworth, D., Patterson, P. M., Pourkashanian, M., and Williams, A., “The formation of SiO2 from Hexamethyldisiloxane Combustion in Counterflow Methane-Air Elames,”26th Symposium (International) on Combustion/The Combustion Institute, pp.1859-1865, 1996.
10.Dufaux D. P. and Axelbaum, R. L., “Nanoscale Unagglomerated Nonoxide Particles from a sodium Coflow Flame,” Combustion and Flame, Vol. 100 pp.350-358, 1995.
11.Ulrich, G.D., “Theory of Particle Formation and Growth in Oxide Synthesis Flames,” Combustion Science and technology, Vol. 4, pp.47-57, 1971.
12.Brock, J. R., and Hidy, G. M., “Collision-Rate Theory and the Coagulation of Free-Molecule Aerosols,” Journal of Applied Physics, Vol.36, pp.1857-1866, 1965.
13.Hidy, G. M., and Lilly, D. K., “Solutions to the Equations for Kinetics of Coagulation,” Journal of Colloid Society, Vol. 20, pp.867-874, 1965.
14.Hidy, G. M., and Brock, J. R., “Some Remarks about the Coagulation or Aerosol Particles by Brownian Motion,” Journal of Colloid Society, Vol. 20, p.123, 1965.
15.Hidy, G. M., “On the Theory of the Coagulation of Non-interacting Particles in Brownian Motion,” Journal of Colloid Society, Vol. 20, pp.123-133, 1965.
16.Swift, D. L. and Friedlander, S. K., “The Coagulation of Hydrosols by Brownian Motion and Laminar Shear Flow,” Journal of Colloid Society, Vol. 19, pp.621-630, 1964.
17.Viswanath, R.N., Bose, A.C. and Ramasamy, S., “Preparations and characterizations of nanostructured TiO2 and TiO2-Si(Ti)O2 composite system,”Journal of Physics and Chemistry of Solid , Vol.62, 1991.
18.Viswanath, R.N. and Ramasamy, S., “Study of TiO2 nanocrystallities in TiO2-SiO2 composites,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol.133, 49, 1998.
19.Ehrman, S. H., Friendlander, S. K. and Zachariah, M. R., “Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame”, Journal Aerosol Science, Vol. 29, pp. 687-706, 1998.
20.Nobert, P., and Bernd, R., “Reduced Kinetic Mechanisms for Application in Combustion Systems,” Springer-Verlag, ISBN: 3-540-56372-5, 1992.
21.Spurr, R. A. and Myers, H., “Quantitative analysis of Anatase-Rutile mixtures with an X-ray diffractometer,” Analytical Chemistry, Vol.29, 760, 1957.
22.Suyama, Y. and Kato, A., “Effect of additives on the formation of TiO2 Particles by Vapor Phase Reaction,”Journal of American Ceramic Society, Vol.68, pp.154-156, 1985.
23.Akhtar, M. K., Xiong, Y. and Pratsinis, S. E., “Vapor synthesis of titania powder by titanium tetrachloride oxidation,”AIChE Journal, Vol. 37, No. 10, pp. 1561-1570, 1991.
24.Akhtar, M. K. and Pratsinis, S. E., “Dopants in Vapor-Phase Synthesis of Titania Powders,” Journal American Ceramic Society, Vol.75, pp. 3408-3416, 1992.
25.Akhtar, M. K. and Pratsinis, S. E., “Vapor phase synthesis of Al-doped titania powders,” Journal of materials research, Vol.9, No.5, pp. 1241-1249, 1994.
26.Vemury, S. and Pratsinis, S. E., “Dopants in Flame Synthesis of Titania,” Journal American Ceramic Society, Vol.78, pp. 2984-2992, 1995.
27.Jang, H. D. and Jeong, J., “The effect of temperature on particle size in the gas-phase production of TiO2,” Aerosol Science and Technology, Vol.23, 553, 1995.
28.Eng, J. A., Zhu, D. L. and Law, C. K., “On the structure, stabilization, and dual response of flat-burner flames,” Combustion and Flame, Vol.100, 645, 1995.
29.Pratsinis, S. E., Zhu, W. and Vemury, S., “The role of gas mixing in flame synthesis of titania powders,” Powder Technology, Vol.86, 87, 1996.
30.Rulison, A. J., Miquel, P. F. and Katz, J. L., “Titania and silica powders produced in a counterflow diffusion flame,” Journal of Materials Research, Vol.11, 3083, 1996.
31.Chen, Y. J., Glumac, N. and Kear, B. H. and Skandan, G., “ High rate synthesis of nanophase materials,” NanoStructured Materials, Vol.9, 101, 1997.
32.Wooldridge, M. S., “Gas-Phase combustion synthesis of particles,” Progress Energy Combustion Science, Vol.24, 63, 1998.
33.Pratsinis, S. E., “Flame aerosol synthesis of ceramic powders,” Progress Energy Combustion Science, Vol.24, 197, 1998.
34.Skandan, G., Chen, Y. J. and Glumac, N. and Kear, B. H., “Synthesis of oxide nanoparticles in low pressure flames,” NanoStructured Materials, Vol.2, 149, 1999.
35.Glumac, N., Skandan, G., Chen, Y. J. and Kear, B. H., “Particle size control during flat flame synthesis of nanophase oxide powders,” NanoStructured Materials, Vol.12, 253, 1999.
36.Singhal, A., Skandan, G., Wang, A. and Glumac, N., “B.H. Kear, On nanoparticle aggregation during vapor phase synthesis,” NanoStructured Materials, Vol.4, 545, 1999.
37.Singhal, A., Skandan, G., Glumac, N., and Kear, B.H., “Minimizing aggregation effects in flame synthesized nanoparticles,” Scripta Materialia, Vol.44, 2203, 2001.
38.Wegner, K. and Pratsinis, S. E., “Scale-up of nanoparticle synthesis in diffusion flame reactors,”Chemical Engineering Science, Vol.58, 458, 2003.
39.葉山豪,TTIP 於火焰中合成TiO2奈米顆粒之研究,國立台灣大學機械工程研究所碩士論文,2003。
40.李國鼎,添加有機化合物TTIP與AIP在甲烷預混火焰中合成TiO2與Al2O3微粒之研究,國立台灣大學機械工程研究所碩士論文,2004。
41.Ulrich, G. D., Theory of particle formation and growth in oxide synthesis flames, Combustion Science Technology, Vol.4, 47, 1971.
42.Ulrich, G. D., Subramanian, N. S., Particle growth in flames-Ⅲ. Coalescence as arate-controlling process, Combustion Science Technology, Vol.17, 119, 1977.
43.Ulrich, G. D., Riehl, J. W. Aggregation and growth of submicron oxide particles in flames, Journal of Colloid Interface Science, Vol.87, 257, 1982.
44.Ulrich, G. D., Flame synthesis of fine particles, Chemical and Engineering News, Vol.62, 22, 1984.
45.Chung, S. L., and Katz, J. L., “The counterflow diffusion flame burner: a new tool for the study of the nucleation of refractory compounds,” Combustion and Flame, Vol.61, pp. 271-284, 1985.
46.Koda, S., and Fujiwara, O., “Silane combustion in an opposed jet diffusion flame,” Twenty-first Symposium (International) on Combustion, The Combustion Institute, pp.1861-1867, 1986.
47.Koda, S., and Fujiwara, O., “A study of inhibition effects for silane combustion by additive gases,” Combustion and Flame, Vol.73, pp187-194, 1988.
48.Zachariah, M. R., Chin, D., Semerjian, H. G., and Katz, J. L., “Silica particle synthesis in a counterflow diffusion flame reactor,” Combustion and Flame, Vol.78, pp. 287-298, 1989.
49.Chung, S. L., Tsai, M. S., and Lin, H. D., “Formation of particles in a H2-O2 counterflow diffusion flame doped with SiH4 or SiCl4,” Combustion and Flame, Vol.85, pp. 134-142, 1991.
50.Chagger, H. K., Hainsworth, D. , Patterson, P. M., Pourkashanian, M., and Williams, A., “The formation of SiO2 from hexamethyldisiloxane combustion in counterflow methane-air flames,” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, pp. 1859-1865, 1996.
51.Briesen, H., Fuhrmann, A., and Pratsinis, S. E., “The effect of precursor in flame synthesis of SiO2,” Chemical Engineering Science, Vol.53, pp.4105-4112, 1998.
52.Glumac, N. G., “Formation and consumption of SiO in powder synthesis flames,” Combustion and Flame, Vol.125, pp.702-711, 2001.
53.Yeh, C. L., Zhao, E., and Ma, H. K., “Combustion synthesis of SiO2 on the aluminum plate,” Journal of Thermal Science, Vol.10, pp. 92-96, 2001.
54.Wooldridge, M. S., Torek, P. V., Donovan, M. T., Hall, D. L., Miller, T. A., Palmer, T. R., and Schrock, C. R., ”An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combustion and Flame, Vol.131, pp. 98-109, 2002.
55.Ma, H. K., Zhao, E., Yeh, C. L., and Chung, K. M., “The formation of nano-size thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO)”, Journal of Thermal Science, Vol.12, pp.89-96, 2003.4
56.林原輝,預混平板甲烷火焰中以有機矽化合物HMDSO與HMDSO燃燒合成矽化物奈米粉體之研究,國立台灣大學機械工程研究所碩士論文,2004。
57.Evans, D. L., “Solid solution of TiO2 in SiO2”, Journal of American ceramic society, Vol.53, 418, 1970.
58.Sankur, H., Gunning, W., “Crystallization and diffusion in composite TiO2-SiO2 thin film”, Journal of Applied Physic, Vol. 66, 4747, 1989.
59.Hung, C. H. and Katz, J. L., “Formation of mixed oxide powders in flames: PartⅠ. TiO2-SiO2,” Materials Research Society, Vol.7, 1861, 1992.
60.Viswanath, R. N., Ramasamy, S., “Study of TiO2 nanocrystallites in TiO2-SiO2
Composites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.133, 49, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top