1.范光照、黃漢邦、陳炳煇、張所鋐、顏家鈺,”奈米工程概論”,2003。
2.Skandan, G., Chen, Y. J., Glumac, N., and Kear, B. H., “Synthesis of oxide nanoparticles in low pressure flames,” NanoStructured Materials, 11(2): 149-158, 1999. 1
3.Wooldridge, M.S., “Gas-phase combustion synthesis of particles,” Progress Energy Combustion Science, 24: 63-87, 1998.
4..Roco, M. C., “Reviews of national research programs in nanoparticle and nanotechnology research in the U.S.A.,” Journal of Aerosol Science, 29(5/6): 749-760,,1998.37
5..Kruis, F. E., Fissan, H., and Peled, A., “Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - a Review;” Journal of Aerosol Science, 29: 511-535, 1998. 3
6..Pratsinis, S. E., “Flame aerosol synthesis of ceramic powders,” Progress Energy Combustion Science, 24: 197-219, 1998. 5.
7.Stark, W. J., and Pratsinis, S. E., “Aerosol flame reactors for manufacture of nanoparticles,” Powder Technology, 126: 103-108, 2002. 13. 5.
8.Glassman, I., Davis, K. A., and Brezinsky, K., “A Gas-Phase Combustion Synthesis process for Non-Oxide Ceramics,” 24th Symposium (International) on Combustion/The Combustion Institute, pp.1877-1882, 1992.
9.Chagger, H. K., Hainsworth, D., Patterson, P. M., Pourkashanian, M., and Williams, A., “The formation of SiO2 from Hexamethyldisiloxane Combustion in Counterflow Methane-Air Elames,”26th Symposium (International) on Combustion/The Combustion Institute, pp.1859-1865, 1996.
10.Dufaux D. P. and Axelbaum, R. L., “Nanoscale Unagglomerated Nonoxide Particles from a sodium Coflow Flame,” Combustion and Flame, Vol. 100 pp.350-358, 1995.
11.Ulrich, G.D., “Theory of Particle Formation and Growth in Oxide Synthesis Flames,” Combustion Science and technology, Vol. 4, pp.47-57, 1971.
12.Brock, J. R., and Hidy, G. M., “Collision-Rate Theory and the Coagulation of Free-Molecule Aerosols,” Journal of Applied Physics, Vol.36, pp.1857-1866, 1965.
13.Hidy, G. M., and Lilly, D. K., “Solutions to the Equations for Kinetics of Coagulation,” Journal of Colloid Society, Vol. 20, pp.867-874, 1965.
14.Hidy, G. M., and Brock, J. R., “Some Remarks about the Coagulation or Aerosol Particles by Brownian Motion,” Journal of Colloid Society, Vol. 20, p.123, 1965.
15.Hidy, G. M., “On the Theory of the Coagulation of Non-interacting Particles in Brownian Motion,” Journal of Colloid Society, Vol. 20, pp.123-133, 1965.
16.Swift, D. L. and Friedlander, S. K., “The Coagulation of Hydrosols by Brownian Motion and Laminar Shear Flow,” Journal of Colloid Society, Vol. 19, pp.621-630, 1964.
17.Viswanath, R.N., Bose, A.C. and Ramasamy, S., “Preparations and characterizations of nanostructured TiO2 and TiO2-Si(Ti)O2 composite system,”Journal of Physics and Chemistry of Solid , Vol.62, 1991.
18.Viswanath, R.N. and Ramasamy, S., “Study of TiO2 nanocrystallities in TiO2-SiO2 composites,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol.133, 49, 1998.
19.Ehrman, S. H., Friendlander, S. K. and Zachariah, M. R., “Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame”, Journal Aerosol Science, Vol. 29, pp. 687-706, 1998.
20.Nobert, P., and Bernd, R., “Reduced Kinetic Mechanisms for Application in Combustion Systems,” Springer-Verlag, ISBN: 3-540-56372-5, 1992.
21.Spurr, R. A. and Myers, H., “Quantitative analysis of Anatase-Rutile mixtures with an X-ray diffractometer,” Analytical Chemistry, Vol.29, 760, 1957.
22.Suyama, Y. and Kato, A., “Effect of additives on the formation of TiO2 Particles by Vapor Phase Reaction,”Journal of American Ceramic Society, Vol.68, pp.154-156, 1985.
23.Akhtar, M. K., Xiong, Y. and Pratsinis, S. E., “Vapor synthesis of titania powder by titanium tetrachloride oxidation,”AIChE Journal, Vol. 37, No. 10, pp. 1561-1570, 1991.
24.Akhtar, M. K. and Pratsinis, S. E., “Dopants in Vapor-Phase Synthesis of Titania Powders,” Journal American Ceramic Society, Vol.75, pp. 3408-3416, 1992.
25.Akhtar, M. K. and Pratsinis, S. E., “Vapor phase synthesis of Al-doped titania powders,” Journal of materials research, Vol.9, No.5, pp. 1241-1249, 1994.
26.Vemury, S. and Pratsinis, S. E., “Dopants in Flame Synthesis of Titania,” Journal American Ceramic Society, Vol.78, pp. 2984-2992, 1995.
27.Jang, H. D. and Jeong, J., “The effect of temperature on particle size in the gas-phase production of TiO2,” Aerosol Science and Technology, Vol.23, 553, 1995.
28.Eng, J. A., Zhu, D. L. and Law, C. K., “On the structure, stabilization, and dual response of flat-burner flames,” Combustion and Flame, Vol.100, 645, 1995.
29.Pratsinis, S. E., Zhu, W. and Vemury, S., “The role of gas mixing in flame synthesis of titania powders,” Powder Technology, Vol.86, 87, 1996.
30.Rulison, A. J., Miquel, P. F. and Katz, J. L., “Titania and silica powders produced in a counterflow diffusion flame,” Journal of Materials Research, Vol.11, 3083, 1996.
31.Chen, Y. J., Glumac, N. and Kear, B. H. and Skandan, G., “ High rate synthesis of nanophase materials,” NanoStructured Materials, Vol.9, 101, 1997.
32.Wooldridge, M. S., “Gas-Phase combustion synthesis of particles,” Progress Energy Combustion Science, Vol.24, 63, 1998.
33.Pratsinis, S. E., “Flame aerosol synthesis of ceramic powders,” Progress Energy Combustion Science, Vol.24, 197, 1998.
34.Skandan, G., Chen, Y. J. and Glumac, N. and Kear, B. H., “Synthesis of oxide nanoparticles in low pressure flames,” NanoStructured Materials, Vol.2, 149, 1999.
35.Glumac, N., Skandan, G., Chen, Y. J. and Kear, B. H., “Particle size control during flat flame synthesis of nanophase oxide powders,” NanoStructured Materials, Vol.12, 253, 1999.
36.Singhal, A., Skandan, G., Wang, A. and Glumac, N., “B.H. Kear, On nanoparticle aggregation during vapor phase synthesis,” NanoStructured Materials, Vol.4, 545, 1999.
37.Singhal, A., Skandan, G., Glumac, N., and Kear, B.H., “Minimizing aggregation effects in flame synthesized nanoparticles,” Scripta Materialia, Vol.44, 2203, 2001.
38.Wegner, K. and Pratsinis, S. E., “Scale-up of nanoparticle synthesis in diffusion flame reactors,”Chemical Engineering Science, Vol.58, 458, 2003.
39.葉山豪,TTIP 於火焰中合成TiO2奈米顆粒之研究,國立台灣大學機械工程研究所碩士論文,2003。40.李國鼎,添加有機化合物TTIP與AIP在甲烷預混火焰中合成TiO2與Al2O3微粒之研究,國立台灣大學機械工程研究所碩士論文,2004。41.Ulrich, G. D., Theory of particle formation and growth in oxide synthesis flames, Combustion Science Technology, Vol.4, 47, 1971.
42.Ulrich, G. D., Subramanian, N. S., Particle growth in flames-Ⅲ. Coalescence as arate-controlling process, Combustion Science Technology, Vol.17, 119, 1977.
43.Ulrich, G. D., Riehl, J. W. Aggregation and growth of submicron oxide particles in flames, Journal of Colloid Interface Science, Vol.87, 257, 1982.
44.Ulrich, G. D., Flame synthesis of fine particles, Chemical and Engineering News, Vol.62, 22, 1984.
45.Chung, S. L., and Katz, J. L., “The counterflow diffusion flame burner: a new tool for the study of the nucleation of refractory compounds,” Combustion and Flame, Vol.61, pp. 271-284, 1985.
46.Koda, S., and Fujiwara, O., “Silane combustion in an opposed jet diffusion flame,” Twenty-first Symposium (International) on Combustion, The Combustion Institute, pp.1861-1867, 1986.
47.Koda, S., and Fujiwara, O., “A study of inhibition effects for silane combustion by additive gases,” Combustion and Flame, Vol.73, pp187-194, 1988.
48.Zachariah, M. R., Chin, D., Semerjian, H. G., and Katz, J. L., “Silica particle synthesis in a counterflow diffusion flame reactor,” Combustion and Flame, Vol.78, pp. 287-298, 1989.
49.Chung, S. L., Tsai, M. S., and Lin, H. D., “Formation of particles in a H2-O2 counterflow diffusion flame doped with SiH4 or SiCl4,” Combustion and Flame, Vol.85, pp. 134-142, 1991.
50.Chagger, H. K., Hainsworth, D. , Patterson, P. M., Pourkashanian, M., and Williams, A., “The formation of SiO2 from hexamethyldisiloxane combustion in counterflow methane-air flames,” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, pp. 1859-1865, 1996.
51.Briesen, H., Fuhrmann, A., and Pratsinis, S. E., “The effect of precursor in flame synthesis of SiO2,” Chemical Engineering Science, Vol.53, pp.4105-4112, 1998.
52.Glumac, N. G., “Formation and consumption of SiO in powder synthesis flames,” Combustion and Flame, Vol.125, pp.702-711, 2001.
53.Yeh, C. L., Zhao, E., and Ma, H. K., “Combustion synthesis of SiO2 on the aluminum plate,” Journal of Thermal Science, Vol.10, pp. 92-96, 2001.
54.Wooldridge, M. S., Torek, P. V., Donovan, M. T., Hall, D. L., Miller, T. A., Palmer, T. R., and Schrock, C. R., ”An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combustion and Flame, Vol.131, pp. 98-109, 2002.
55.Ma, H. K., Zhao, E., Yeh, C. L., and Chung, K. M., “The formation of nano-size thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO)”, Journal of Thermal Science, Vol.12, pp.89-96, 2003.4
56.林原輝,預混平板甲烷火焰中以有機矽化合物HMDSO與HMDSO燃燒合成矽化物奈米粉體之研究,國立台灣大學機械工程研究所碩士論文,2004。57.Evans, D. L., “Solid solution of TiO2 in SiO2”, Journal of American ceramic society, Vol.53, 418, 1970.
58.Sankur, H., Gunning, W., “Crystallization and diffusion in composite TiO2-SiO2 thin film”, Journal of Applied Physic, Vol. 66, 4747, 1989.
59.Hung, C. H. and Katz, J. L., “Formation of mixed oxide powders in flames: PartⅠ. TiO2-SiO2,” Materials Research Society, Vol.7, 1861, 1992.
60.Viswanath, R. N., Ramasamy, S., “Study of TiO2 nanocrystallites in TiO2-SiO2
Composites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.133, 49, 1998.