跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家壽
研究生(外文):Chia-Shou Chang
論文名稱:應用表面改質實現微晶片自組裝之製程開發與分析
論文名稱(外文):Process Development and Analysis of Self-Assembly Microchips with Surface Modification
指導教授:朱錦洲汪若蕙吳恩柏
指導教授(外文):Chin-Chou Chu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:113
中文關鍵詞:自組裝兩階段式共晶銲錫表面改質親疏水性兩接點接觸角
外文關鍵詞:self-assemblytwo-stepeutectic soldersurface modificationhydrophobic-hydrophilictwo-padscontact angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:484
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自組裝是一種可以將微小結構自動接合的一種技術,由於電子或光學元件的尺寸微小化,隨之產生尺寸效應,進而衍生出許多問題,包括機器手臂無法順利進行取放機制、序列式的取放太耗費時間成本,因此我們需要一套經濟且有效的構裝方法,而自我組裝技術成為解決的方案之一。本文首次發展一種兩階段式(two-step)的自組裝技術,即暫時性自組裝技術結合共晶銲錫(eutectic solder)加熱融熔,進而達到永久性接合與電性連結的雙重目的。我們藉由表面改質(surface modification)的方法控制晶片與基板表面特性,使其在水中產生親疏水性(hydrophilic-hydrophobic)效應,而熱力學定理的熵增加現象進一步造成晶片與基板之間自發性的裝配過程。當完成第一階段自組裝動作後,我們利用銲錫凸塊與助焊劑產生第二階段的加熱自對位過程,以完成整個兩階段式的自組裝過程。
除了前述所發展兩階段式自組裝技術,本文亦設計一新式的釋放技術,實現了兩接點(two-pads)的自組裝技術,同時利用發展的模擬工具進行解釋與說明,我們發現單接點組裝結果以長方形為佳,組裝方式為平移後再進行旋轉接合;兩接點組裝結果以兩正方形為佳,組裝方式為平移與旋轉同時接合。另外也可藉此設計不同接合大小形狀與排列方式,以獲得最佳的組裝能力。
最後,利用推導出的理論模型與得到的力學實驗值作一比較,以驗證其正確性。另外,我們由楊格方程式配合歐文-文特方法(Owens-Wendt method)計算出水中元件之間的接觸角(contact angle),判斷其接合的好壞,進而得到製程上的最佳參數,此技術與表面黏著(surface mount technology;SMT)與覆晶構裝(Flip Chip)技術相容,可用於發光二極體(light emitting diode;LED)、無線標籤(RFID)、微機電(MEMS)、生醫(biomedical)元件的領域。
Self-assembly is to transform a system from a disordered state to an ordered state, meaning that microstructures automatically assemble on the substrate. Conventional assembly technology has adopted “pick and place” which picks microchips from a wafer and placing them onto the substrate. But this technique encounters speed and cost constraints when chip size is reduced to the micrometer scale. Hence, an economic and effective self-assembly method is very important. We demonstrated a technique for temporally self-assembling silicon microchips onto a silicon substrate and performing further self-alignment at a high temperature to form permanently electrical connection by the eutectic solder bumps. We used surface modification to control the hydrophobic-hydrophilic surface properties of patterned microstructures and substrates to result in a spontaneous wetting. After the first step spontaneous self-assembly process, the second step self-alignment process is followed by means of solder-based surface tension.
On the other hand, we also designed a new releasing mechanism to realize the two-pads self-assembly technique. Meanwhile, we developed a simulation model to explain the phenomenon. The rectangle-shaped pad represents the better assembly performance than square-shaped pad, and the displacement model occurs earlier than rotation model for the single-pad self-assembly. In addition, the two-square-shaped pads represent the better assembly performance than one-rectangle-one-square-shaped pads and the displacement model coincides with rotation model at the same time for the two-pads self-assembly. Also, use of different bonding sizes and shapes help enhancing the self-assembly performance.
At last, the surface force model is provable because experimental result is close to this model. We also combined Young’s equation with Owens-Wendt method to calculate the contact angle between the microchip and substrate in water. Then, we can distinguish the bonding and obtain the optimization. This technique is compatible with the surface mount technique (SMT) and Flip Chip technique. The presented technique could be applied to assembly of light emitting diodes, RFID tags, MEMS components, micro-integrated circuit devices or other types of microstructures.
誌謝1
摘要2
Abstract3
目錄4
表目錄7
圖目錄8
第 1 章 序言
1.1 研究動機1-1
1.2 文獻回顧1-2
1.3 研究範疇1-7
第 2 章 理論基礎
2.1 熱力學2-1
2.2 表面張力2-3
2.2.1 親疏水特性2-5
2.3 自組裝系統能量2-6
2.4 自組裝表面力模型2-7
2.5 結語2-10
第 3 章 實現方法
3.1 表面性質量測3-1
3.1.1 自組裝表面性質3-1
3.2 一階段式自組裝方法3-2
3.3 兩階段式自組裝方法3-4
3.4 自組裝流程3-5
3.5 結語3-7
第 4 章 單接點實驗結果與分析
4.1 微晶片製作4-1
4.2 基板製作4-3
4.2.1 一階段式初始基板製作4-3
4.2.2 兩階段式初始基板製作4-3
4.3 有機化合物液體的選擇4-4
4.4 表面特性量測4-5
4.4.1 晶片初始表面量測4-6
4.4.2 基板初始表面量測4-7
4.5 表面處理4-10
4.5.1 晶片表面處理4-10
4.5.2 基板表面處理4-12
4.5.3 表面改質方式的選擇4-26
4.6 助焊劑鋼板塗佈4-27
4.6.1 一階段式基板4-27
4.6.2 兩階段式基板4-27
4.7 浸沾附過程4-28
4.7.1 一階段式基板沾附情形4-28
4.7.2 兩階段式基板沾附情形4-29
4.8 釋放過程4-31
4.9 自組裝過程4-33
4.9.1 一階段式自組裝過程4-33
4.9.2 兩階段式自組裝過程4-34
4.10 加熱自對位過程4-35
4.11 自組裝結果4-36
4.11.1 一階段式自組裝結果4-36
4.11.2 兩階段式自組裝結果4-37
4.12 X光檢測4-38
4.13 模擬分析方法4-42
4.13.1 計算方法4-43
4.13.2 模型建立4-43
4.13.3 重疊面積計算4-44
4.13.4 表面能數據計算4-46
4.13.5 程式流程4-46
4.14 單接點模擬分析結果4-47
4.15 接點設計4-51
4.15.1 單接點設計4-51
4.16 結語4-54
第 5 章 兩接點實驗結果與分析
5.1 兩接點自組裝設計5-1
5.2 兩接點一階段式自組裝結果5-6
5.3 兩接點兩階段式自組裝結果5-8
5.4 兩接點兩階段式自組裝X光檢測5-10
5.5 自組裝流程回顧5-14
5.6 兩接點模擬分析結果5-14
5.7 接點設計5-18
5.7.1 兩接點設計5-18
5.8 結語5-21
第 6 章 自組裝力學
6.1 組裝力驗證6-1
6.1.1 量測試片製作6-1
6.1.2 儀器使用6-1
6.1.3 介面控制6-2
6.1.4 量測結果6-3
6.2 表面改質對自組裝的影響6-7
6.3 結語6-10
第 7 章 結論與未來展望
7.1 結論7-1
7.2 未來展望7-2
參考文獻Ⅰ
附錄一 符號表A
[1] M Ataka and M Asai, “Analysis of the nucleation and crystal growth kinetics of lysozyme by a theory of self-assembly,” Biophys J., vol.58, pp.807-811, 1990.
[2] P. A. Kralchevsky, N. Paunovv, and I. B. Ivanov, “Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface,” J Colloid Interface Sci, vol.151, pp.79-94, 2002.
[3] Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B, vol.64, pp.113108-131111, 2001.
[4] R. S. Fearing, “Survey of sticking effects for micro-parts,” Proc. IEEE/RSJ Int. Conf. on Robotics and Intelligent Systems(IROS), Pittsburg, PA, pp.212-217, 1995.
[5] Jiandong Fang and Karl F. Böhringer, “Wafer Level Packaging Based on Uniquely Orienting Self-Assembly,” ASME/IEEE Journal of Microelectromechancial Systems, vol.15, pp.531-540, 2006.
[6] H.-J. J. Yeh and J. S. Smith, “Fluidic assembly for the integration of GaAs light-emitting diodes on Si substrate,” IEEE Photon. Technol. Lett., vol.6, pp.706-708, 1994.
[7] K. F. Bohringer, K. Goldberg, M. Cohn, R. T. Howe, and A. P. Pisano, “Parallel microassembly with electrostatic force fields,” Proc. 1998 IEEE Int. Conf. Robotics & Automation, Leuven, Belgium, pp.1204-1211, 1998.
[8] H. O. Jacobs, A. R. Tao, A. Schwartz, D. H. Gracias, and G. M. Whitesides, “Fabrication of a cylindrical display by patterned assembly,” Science, vol.296, pp. 323-325, 2002.
[9] W. Zheng and H. O. Jacobs, “Shape-and solder-directed self-assembly to package semiconductor device segments.” Appl. Phys. Lett. vol.85, pp.3635–3637, 2004.
[10] U. Srinivasan, D. Liepmann, and R. T. Howe, “Microstructures to substrate self-assembly using capillary forces,” J. Microelectromech. Syst., vol.10, pp.17-24, 2001.
[11] Xiaorong Xiong, Yael Hanein, Jiandong Fang, Yanbing Wang, Weihua Wang, Daniel T. Schwartz, and Karl F. Böhringer, “Controlled Multi-Batch Self-Assembly of Micro Devices,” ASME/IEEE Journal of Microelectromechanical Systems, vol.12, pp.117-127, 2003.
[12] K. F. Böhringer, U. Srinivasan, R. T. Howe, “Modeling of Fluidic Forces and Binding Sites for Fluidic Self-Assembly,” IEEE Conference on Micro Electro Mechanical Systems (MEMS), Interlaken, Switzerland, pp.369-374, 2001.
[13] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Applied Physics Letters, vol.77, pp.1399-1401, 2000.
[14] A. W. Adamson and A. P. Gast, Physical chemistry of surfaces, 6th, New York : Wiley, 1997.
[15] A. W. Neumann and J. K. Spelt, Applied surface thermodynamics, New York : M. Dekker, 1996.
[16] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd, London, CA: Academic Press, 1992.
[17] C. A. Miller and P. Neogi, Interfacial phenomena : equilibrium and dynamic effects, New York : M. Dekker, 1985.
[18] A. Ben-Naim, Hydrophobic interactions, New York : Plenum Press, 1980.
[19] A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly of millimetre-scale components,” Nature, vol.386, pp.162-164, 1997.
[20] B. B. Sauer and N. V. Dipaolo, “Surface tension and dynamic wetting of polymers using the wihelmy memthod : applications to high molecular weights and elevated temperatures,” J Colloid Interface Sci, vol.144, pp.527-537, 1991.
[21] R. J. Good, “Contact angle, wetting, and adhesion : a critical review,” Journal of adhesion science and technology, vol.6, pp.1269-1302, 1992.
[22] H. A. Biebuyck and G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir, vol.10, pp.2790-2793, 1994.
[23] http://www.kester.com, Jan. 2005.
[24] 吳恩柏、張家壽,“微小結構自組裝方法,” 中華民國發明專利證號I250594,2006。
[25] C. S. Chang, R. H. Wang, K. C. Chen, and E. Wu, “Self-Assembly of Microchips on Substrates,” 56th Electronic Components and Technology Conference, San Diego, California, pp.1533-1538, 2006.
[26] http://www.disco.co.jp/eg/solution/library/dbg.html, Jan. 2005.
[27] C. Basaran, H. Ye, D. C. Hopkins, D. Frear, and J. K. Lin, “Failure Modes of Flip Chip Solder Joints Under High Electric Current Density,” Journal of Electronic Packaging, vol.127, pp.157-163, 2005.
[28] T. W. Solomons, C. B. Fryhlem, and R. G. Johnson, Study guide and solutions manual to accompany Organic chemistry, 7th, New York : J. Wiley, 2000.
[29] http://www.iosh.gov.tw/msds.htm, Jan. 2005.
[30] www.s-eo.co.kr, Aug. 2005.
[31] A. Ulman, “Formation and structure of self-assembled monolayers,” Chem Rev., vol.96, pp.1533-1554, 1996.
[32] W. Kern, Handbook of Semiconductor Cleaning technology, Noyes, N. J. : Wiley, 1993.
[33] T. M. Pan, T. F. Lei, F. H. Ko, T. S. Chao, T. H. Chiu, and C. P. Lu, “Novel One-Step Aqueous Solutions to Replace Pregate Oxide Cleans,” IEEE Transactions on Semiconductor Manufacturing, vol.17, pp.470-476. 2004.
[34] H. Xiao, Introduction to semiconductor manufacturing technology, Upper Saddle River, N. J. : Prentice Hall, 2001.
[35] T. Suni, K. Henttinen, I. Suni, and J. Mäkinen, “Effects of plasma activation on hydrophilic bonding of Si and SiO2,” J. Electrochem. Soc., vol.149, pp.348-351, 2002.
[36] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and K. Suma, “Control factor of native oxide growth on silicon in air or in ultra pure water,” Appl. Phys. Lett., vol.55, pp.562-564, 1989.
[37] P. Amirfeiz, S. Bengtsson, M. Bergh, E. Zanghellini, and L. Borjesson, “Formation of silicon structures by plasma-activated wafer bonding,” J. Electrochem. Soc., vol.147, pp.2693-2698, 2000.
[38] J. Seo, E. Ertekin, M.S. Pio, and L.P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems, Las Vegas, NV, pp.192-195, 2002.
[39] http://nems.ntu.edu.tw/web_nems/c_nems/Default.htm, Dec. 2006.
[40] J. S. Hwang, Lead-Free Implementation and Production: a manufacturing guide, McGraw-Hill, 2004.
[41] http://www.kester.com/zh-CN/distributors/dist_list.aspx?rcd=taiwan, Apr. 2005.
[42] http://www.isti.com.tw/b_technology/Xray.htm, Nov. 2006.
[43] D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., vol.13, pp.1741-1747, 1969.
[44] R. J. Good and K. L. Mittal, Contact Angle, Wettability and Adhesion, Utrecht, Netherlands: VSP, 1993.
[45] http://www.nitto-op.com.tw/web/index.htm, Aug. 2006.
[46] www.imada.com, Jun. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top