跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊適壕
研究生(外文):Shih-Hao Yang
論文名稱:多體力源理論及其應用
論文名稱(外文):Many Body Force Theory and its Applications
指導教授:張建成張建成引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:233
中文關鍵詞:力源理論輔助勢流圓柱方塊多圓柱表面控制翼柱耦合三維圓柱交叉排列
外文關鍵詞:force Theorypotential theorycylindersquaremultiple cylinderssurface controlcylinder behind airfoil3D cylinder in crossing arrangementSIMPLEFluent
相關次數:
  • 被引用被引用:4
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的為使用力源理論的方法,來探討流場結構與物體受力之間的關係。物體通過均勻流場所受的力一直以來都是大家所相當關注的問題,而在計算、升阻力與力矩時,一般文獻中最常使用的方法都是由壓力來估算物體的受力,但因為是由物體表面的壓力積分而得到物體的受力,因此無法清楚的得知整個流場對物體受力的影響。在本論文中使用了一種診斷性的力源理論Chang(1992)來區別流場中各流體元素對力的貢獻,並成功的將其擴展至可應用在物體具有表面速度的流場、多體流場、三維流場和三維多體流場的受力分解。
此力源理論法引入一輔助勢流與Navier-Stokes方程式作內積,再求其體積分,可求得壓力項對物體所造成的外力,並可引出升、阻力及力矩元素的概念來探討流場個別渦旋對升、阻力及力矩的實際貢獻。這種觀點對於探討非定常流場與物體之間的受力關係非常有幫助,根據這些看法來分析流場型態,除了可更深入瞭解流場性質外,並且可以利用此方法來分析、預測、設計,甚至控制出有利於實際應用的流場。本論文將就幾種常見的流場情況,利用力源理論分解並深入探討受力關係,進而發展有助於提高效能的流場控制方法。
誌謝 i
摘要 iii
目錄 v
圖目錄 x
表目錄 xx
符號表 xxi
1. 導論 1
1.1. 背景及目的 1
1.2. 文獻回顧 3
1.2.1. 圓柱 3
1.2.2. 表面控制圓柱 4
1.2.3. 多圓柱流場 5
1.2.4. 力源理論 9
1.3. 全文概述 10
2. 控制方程式與數值方法 11
2.1. 簡介 11
2.2. 網格的產生 11
2.2.1. 時間 12
2.2.2. 數值擴散 13
2.2.3. 網格品質 14
2.3. 控制方程式 17
2.4. 數值方法 19
2.4.1. 分離求解器 20
2.4.2. 空間離散 21
2.4.3. 時間離散 26
2.4.4. 壓力-速度耦合關係的處理 28
2.5. UDF介紹 35
2.5.1. 網格資料結構 35
2.5.2. 解釋和編譯UDF的比較 38
2.5.3. 使用DEFINE巨集定義一個UDF 39
2.5.4. 與求解器的資料連結 46
2.5.5. 使用者自訂標量(User Defined Scalar & Memory) 47
2.5.6. UDF的執行流程 48
3. 力源理論 50
3.1. 前言 50
3.2. 輔助勢流 51
3.3. 瞬間啟動的物體 52
3.4. 表面部分滑移 56
3.5. 多體力源理論 60
4. 實驗設備與方法 63
4.1. 實驗設備 63
4.1.1. 拖曳式水槽及拖曳式平台 63
4.1.2. 攝影量測等週邊設備 64
4.1.3. 流場顯影 65
5. 表面控制圓柱 68
5.1. 前言 68
5.2. 瞬間啟動圓柱 69
5.2.1. 簡介 69
5.2.2. 數值結果驗證 69
5.2.3. 流場現象 71
5.2.4. 物體的受力分析 73
5.3. 表面滑移圓柱 80
5.3.1. 簡介與概念 80
5.3.2. 數值結果驗證 83
5.3.3. 流場現象 84
5.3.4. 物體的受力分析 85
6. 多圓柱流場 94
6.1. 兩個圓柱前後排列 94
6.1.1. 簡介 94
6.1.2. 數值結果驗證 94
6.1.3. 流場現象 96
6.1.4. 物體的受力分析 97
6.2. 三個等大小圓柱 109
6.2.1. 簡介 109
6.2.2. 流場現象 109
6.2.3. 物體受力分析 111
6.3. 三個不同大小圓柱 119
6.3.1. 體積阻力稜線初步分析 119
6.3.2. 流場現象 120
6.3.3. 物體的受力分析 121
7. 翼-柱耦合流場 131
7.1. 簡介 131
7.2. 單一機翼瞬間啟動 131
7.2.1. 流場現象 132
7.2.2. 物體受力分析 134
7.3. 翼-柱耦合流場 141
7.3.1. 體積阻力稜線走勢分析 141
7.3.2. 流場現象 142
7.3.3. 物體受力分析 144
8. 三維多體流場 152
8.1. 圓球瞬間起動 152
8.1.1. 流場現象 152
8.1.2. 物體受力分析 156
8.2. 正立方塊瞬間起動 161
8.2.1. 流場現象 161
8.2.2. 物體受力分析 164
8.3. 有限長度圓柱瞬間起動 169
8.3.1. 流場現象 169
8.3.2. 物體受力分析 173
8.4. 兩顆圓球前後排列 177
8.4.1. 流場現象 177
8.4.2. 物體受力分析 179
8.5. 兩個有限長圓柱交叉排列 185
8.5.1. 流場現象 185
8.5.2. 物體受力分析 188
8.6. 結語 190
9. 結論與展望 195
10. 參考文獻 198
APPENDIX 205
Achenbach, E. (1974). "The effect of surface roughness and tunnel blockage on the flow past spheres." Journal of Fluid Mechanics 65: 113-125.

Alam, M. M., M. Moriya, et al. (2003). "Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number." Journal of Wind Engineering and Industrial Aerodynamics 91: 139-154.

Bar-Lev, M. and H. T. Yang (1975). "Initial flow field over an impulsively started circular cylinder." Journal of Fluid Mechanics 72: 625-647.

Barth, T. J. and D. Jespersen (1989). The design and application of upwind schemes on unstructured meshes. AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting. Reno, Nevada.

Bearman, P. W. and J. K. Harvey (1976). "Golf ball aerodynamics." Aeronaut. Q. May: 112-122.

Biermann, D. and W. H. J. Herrnstein (1933). "The interference between struts in various combinations." National Advisory Committee for Aeronautics, Technical Report 468: 515-524.

Chang, C. C. (1992). "Potential Flow and Forces for Incompressible Viscous Flow." Proc. R. Soc. Lond. A 437: 517-525.

Chang, C. C. and R. L. Chern (1991). "A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method." Journal of Fluid Mechanics 233: 243-263.

Chang, C. C. and S. Y. Lei (1996). "An analysis of aerodynamic forces on a delta wing." Journal of Fluid Mechanics 316: 173-196.

Chang, C. C. and S. Y. Lei (1996). "On the sources of aerodynamic forces: steady flow around a cylinder or a sphere." Proceedings of the Royal Society, London, Series A 452: 2369-2395.

Chang, C. C., B. H. Liou, et al. (1992). "An analytical and numerical study of axisymmetric flow around ellipsoids of circular section." Journal of Fluid Mechanics 234: 219-246.

Chorin, A. J. (1973). "Numerical study of slightly viscous flow." Journal of Fluid Mechanics 57: 785-796.

Chorin, A. J. (1978). "Vortex sheet approximation of boundary layers." J. Comput. Phys. 27: 428-442.

Chu, C. C., C. C. Chang, et al. (1996). "Suction effect on an impulsively started circular cylinder: vortex structure and drag reduction." Phys. Fluids 8(11): 2995-3007.

Collins, W. M. and S. C. R. Dennis (1973a). "The initial flow past an impulsively started circular cylinder." Q. J. Mech. & Appl. Math. 26: 53-72.

Collins, W. M. and S. C. R. Dennis (1973b). "Flow past an impulsively started circular cylinder." Journal of Fluid Mechanics 60: 105-127.

Coutanceau, M., and Bouard, R (1980). "The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 10000." Journal of Fluid Mechanics 101: 583-607.


Coutanceau, M. and R. Bouard (1977). "Experimental Determination of the main feature of the viscous flow in the wake of a circular cylinder in uniform translation, Part 1. Steady Flow; Part 2. Unsteady Flow." Journal of Fluid Mechanics 79: 231-272.

Gu, Z. F. (1996). "On interference between two circular cylinders at supercritical Reynolds numbers." Journal of Wind Engineering and Industrial Aerodynamics 62: 175-190.

Hori, E. (1959). Experiments on flow around a pair of parallel circular cylinders. Proceeding of 9th National Congress for Applied Mechanics. Tokyo, Japan.

Igarashi, T. (1981). "Characteristics of the flow around two circular cylinders arranged in tandem." Bulletin of JSME 25: 349-357.

Ishigai, S., E. Nishikawa, et al. (1972). "Experimental study of structure of gas flow in tube banks with tube axes normal to flow (part I, Karman Vortex flow from tow tubes at various spacings)." Bulletin of JSME 16: 949-956.

Kang, S. (1997). "Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers." PHYSICS OF FLUIDS 15: 2486-2498.

Kim, T. and M. R. Flynn (1995). "Numerical simulation of air flow around multiple objects using the discrete vortex method." Journal of Wind Engineering and Industrial Aerodynamics 56: 213-234.

Kiya, M., M. Arie, et al. (1980). "Vortex shedding from two circular cylinders in staggered arrangement." Transactions of ASME, Journal of Fluids and Engineering 102: 166-173.

Kiya, M., M. O., et al. (1992). Flip-Flopping flow around two bluff bodies in tandem arrangement. Bluff-body wakes, Dynamic and instabilities. Berlin, Springer.

Kondo, N. and D. Matsukuma (2005). "Numerical simulation for flow around two circular cylinders in tandem." International Journal of Computational Fluid Dynamics 19(4): 277-288.

Lam, K. (1989). Application of surface vorticity method to flow around two cylinders arrange in tandem. The fourth Asian Congress of Fluid Mechanics.

Schlichting, H. (1979). Boundary-Layer Theory. New York, McGraw-Hill.

Wu, J. Z. e. a. (1991). "Guiding principles for vortex flow control." AIAA Paper 91-0617.

Li, J., A. Chambarel, et al. (1991). "Numerical study of laminar flow past one and two circular cylinders." Computers and Fluids 19: 155-170.

Li, J., J. Sun, et al. (1992). "Numerical study of and oscillating cylinder in uniform flow and in the wake of an upstream cylinder." Journal of Fluid Mechanics 237: 457-478.

Lin, J. C., Y. Yang, et al. (2002). "Flow past two cylinders in tandem: Instantaneous and averaged flow structure." Journal of Fluids and Structures 16: 1059-1071.

M.H. Akbari, S. J. P. (2005). "Numerical investigation of flow patterns for staggered cylinder pairs in cross-flow." Journal of Fluids and Structures 20: 533-554.

Mahir, N. and D. Rockwell (1996). "Vortex formation from a forced system of two cylinders 1 Tandem arrangement." journal of Fluids and Structures 10: 473-489.

Md. Mahbub Alam, H. S., Y. Zhou (2005). "Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow." Journal of Fluids and Structures 21: 263-394.

Meneghini, J. R. and F. Saltra (2001). "Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements." Journal of Fluids and Structures 15: 327-350.

Mittal, S., V. Kumar, et al. (1997). "Unsteady incompressible flows past two cylinders in tandem and staggered arrangements." International Journal for Numerical methods in Fluids 25: 1315-1344.

Mittal, S., V. Kummer, et al. (1997). "Unsteady incompressible flows past two cylinders in tandem and staggered arrangements." International Journal for Numerical methods in Fluids 25: 1315-1344.

Okajima, A., K. Sugitani, et al. (1986). "Flow around a pair of circular cylinders arranged side by side at high Reynolds numbers." Trans. JSME 52: 2844-2850.

Schlichting, H. (1979). Boundary-Layer Theory. New York, McGraw-Hill.

Suzuki, N., H. Sato, et al. (1971). Aerodynamic forces acting on circular cylinders arranged in a logitudinal row. Wind Effects on Buildings and Structures, International Wind Conference. Tokyo.

Taneda, S. (1956). "Studies on wake vortices (III). Experimental investingation of the wake behind a sphere at low Reynolds numbers." Journal of the Physical Society of Japan 11: 1104-1108.

Tatsuno, M., Y. Hamada, et al. (2000). Effect of interference between two circular cylinders in tandem arrangement at the critical Reynolds number regime. 9th International Symposium on Flow Visualization.

Wang, C. T. and C. C. Chang (1998). "Sound radiation by a vortex ring passing near the apex of a conical body." Proceedings of the Royal Society, London, Series A 454: 743-761.

Wu, J. Z. e. a. (1991). "Guiding principles for vortex flow control." AIAA Paper 91-0617.

Z.J. Wang, Y., Zhou (2005). "Vortex interactions in a two side-by-side cylinder near-wake." International Journal of Heat and Fluid Flow 26: 362-377.

Zdravkovich, M. M. (1972). "Smoke observations of the wakes of tandem cylinders at low Reynolds number." Aernautical Journal 2: 109-114.

Zdravkovich, M. M. (1977). "Review of flow interference between two circular cylinders in various arrangements." Transactions of the ASME 99: 618-633.

Zdravkovich, M. M. (1985). "Flow-induced oscillations of two interfering circular cylinders." Journal of Sound and Vibrations 101: 511-521.

Zdravkovich, M. M. (1987). "The effects of interference between circular cylinders in cross flow." Journal of Fluids and Structures 1: 239-261.

Zdravkovich, M. M. (1997). Flow around circular cylinders, Oxford University Press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊