跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃耀田
研究生(外文):Yao Tien Huang
論文名稱:以模態壓電變壓器研製液晶顯示器背光模組用換流器的理論與驗證
論文名稱(外文):Theory and Experimental Verification of Modal Based Piezoelectric Transformer for LCD Backlight Inverters
指導教授:李世光李世光引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:220
中文關鍵詞:壓電變壓器模態電極液晶顯示器背光零切換
外文關鍵詞:Piezoelectric transformerModal electrodeLCD backlightZVS
相關次數:
  • 被引用被引用:6
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究論文主要的研究內容在於開發創新的壓電變壓器,並利用所開發的創新壓電變壓器來完成液晶顯示器(Liquid Crystal Display)背光所需的壓電式換流器(Piezoelectric Inverter)製作。由於針對不同尺寸、不同用途的液晶顯示器,其所需要的換流器規格也會不同,因此本論文分別針對大尺寸液晶電視背光和中小型可攜式液晶顯示器背光的需求,分別開發出不同規格之壓電式換流器。對大尺寸液晶電視所需的壓電式換流器而言,在本論文中提出利用單層壓電變壓器來製作升壓元件的創新架構,所使用的單層壓電變壓器可以降低壓電式換流器的製作成本,因此可以提高市場競爭力。同時為了彌補單層壓電變壓器升壓比不足的限制,所以在本研究論文中所開發完成的壓電式換流器中,提出藉由系統內部的功率因子校正電路(Power Factor Correction, PFC)將一般市電電壓直接轉換成為可供系統使用的高直流工作電壓。對於中小型可攜式液晶顯示器背光用換流器,由於其電壓源通常來自電池,因此其所能提供的電壓仍為低直流電壓,所以為了增加壓電變壓器的升壓比,本論文採用了多層壓電變壓器來完成具有高升壓比的壓電式換流器。
在創新壓電變壓器的設計上,本研究論文導入模態感應子與致動器(Modal Sensor and Actuator)的設計理念到創新壓電變壓器的輸入電極形狀(Input Electrode)設計。透過壓電變壓器表面電極形狀的設計,可以使壓電變壓器具有在頻率域上過濾輸入電壓內部高頻成分的特性,以增進壓電變壓器的整體能量傳輸效率。為了能夠設計出適合不同壓電變壓器的模態電極形狀,本論文從傳統的壓電力學理論分析其機械結構的共振振形出發,在以機械結構振動的偏微分方程式(Partial Differential Equation, PDE)為理論基礎,利用正交基底將偏微分方程式轉換成常微分方程式(Ordinary Differential Equation, ODE)以求能表示出壓電變壓器在共振頻率附近的振動狀態。同時在經由對壓電變壓器作力學分析的過程,本論文分別設計出具有全模態濾波(Full Modal Filtering Effect)和準模態濾波(Quasi Modal Filtering Effect)特性的輸入電極形狀。透過準模態電極的使用,可以提供過濾輸入電壓內部奇數倍基頻的濾波效果,使壓電變壓器可以直接採用方形或是類似方形的梯形輸入電壓直接驅動。透過全模態電極的使用,可以提供完全的模態過濾效果,因此可以提升壓電變壓器的能量傳輸效率和增加壓電變壓器的最佳工作頻率範圍(Optimal Operating Region)。
為了降低壓電式換流器內部場效電晶體(MOSFET)的開關損失(Switching Loss),在本論文中還引入了過去在研究切換式電源供應器(Switching Power Supply)所使用的軟切換技巧(Soft Switching Technology)來設計壓電換流器的驅動電路。過去在分析壓電變壓器時,最常使用的方析方式是利用等效電路的模型來分析壓電變壓器的特性,但在本研究論文中,為了分析場效電晶體是否可以達到零電壓切換的工作狀態,因此導入了壓電變壓器等效電路模型來作分析。基本上,壓電變壓器的等效電路是利用一個電容和電感來構成LC共振電路,並透過壓電變壓器內部的電感和調整換流器內切換電路的開關時間,進而讓負責切換的場效電晶體(MOSFET)達到零電壓切換(Zero Voltage Switch)的目的,因此可以降低開關損失(Switching Loss),進而提升整體系統的能量傳輸效率。除此之外,為了簡化達到零電壓切換狀態的設計考量,本論文中採用一了個小電感串接在壓電變壓器前,並利用小電感幫助場效電晶體完成零電壓切換的工作狀態,而後再透過壓電變壓器的準模態電極來對輸入電壓的波形進行濾波。
綜合上述各種設計參數,本論文嘗試融合歷史上針對壓電變壓器所完成的力學與電學的分析方式,逐步完成足以突破過去世界各國對壓電變壓器所設下的專利藩籬,透過準模態電極和零電壓切換的開關設計,順利完成了驅動液晶顯示器背光冷陰極燈管所需使用之無線圈壓電式換流器。除此之外,本論文還提出如何採用具有全模態電極的多層壓電變壓器,來提升可攜式液晶顯示器用壓電換流器的整體系統效率的創新架構。
The main thrust of this dissertation is to develop innovative piezoelectric transformers so as to use these series of newly developed piezoelectric transformers for the development of piezoelectric technology based inverter for LCD monitor backlight. The specifications of the piezoelectric technology based inverter vary whenever the dimension and purpose of the LCD monitor is changed. Various types of piezoelectric transformers for large and mid sized LCD TV and portable LCD monitor were examined and studied. For large size LCD TV backlight module, a single-layer piezoelectric transformer was used as the component to amplify the input voltage to light cold cathode fluorescent lamp (CCFL). The single-layer piezoelectric transformer provides us with an opportunity to lower the manufacturing cost of the piezoelectric technology based inverter, which in turn then increase the competition edge when compared to traditional magnetic coil transformer. To overcome the limitation that the step-up ratio of a single layer piezoelectric transformer is low, internal power factor correction circuit (PFC) was used to convert. the AC voltage derived from regular electric outlet to high DC input voltage for the newly developed inverters. For portable LCD monitor, the DC voltage usually was derived form small battery, which leads to low DC input voltage. Therefore, to increase the step-up ratio of the piezoelectric transformer, a multi-layer piezoelectric transformer was used to complete the piezoelectric technology based inverter for portable LCD monitor.
By introducing the design thoughts of modal sensors and actuators into the design of piezoelectric transformer input electrode, a series of innovative piezoelectric transformers were developed. It was shown that these newly introduced input electrodes can provide modal filtering property needed to filter out unwanted high frequency voltage embedded within the input voltage waveform. To design modal electrode for various piezoelectric transformer, traditional piezoelectric theory was used to analyze the resonant vibration behaviors of the piezoelectric transformers. Traditionally the structural vibration of the piezoelectric transformer was modeled by using a partial differential equation (PDE). Adopting normal mode expansion, this PDE can be decomposed into a series of ordinary differential equations (ODE). Each ordinary differential equation can be used to represent mechanic vibration of the piezoelectric transformer when the driving frequency is near the resonant frequency of the piezoelectric transformer. Both full modal electrode and quasi-modal electrode were developed within this dissertation. By using the quasi-modal electrode, the voltage waveform with odd times piezoelectric transformer resonant frequency existed within the input voltage can be completely filtered out. By using the quasi-modal electrode, both rectified and trapezoidal input voltage can be used to drive the piezoelectric transformer directly without suffering efficiency loss. It was also shown that full modal filtering effect can be achieved by using full modal electrode. The experimental result and the theoretical analysis presented in this dissertation demonstrated that full modal electrode can improve the energy transfer efficiency and expand the optimal operating region of the piezoelectric transformer.
To lower the switch loss of MOSFET adopted in the piezoelectric technology based inverter, soft switching technology that was adopted inside the traditional switching power supply circuit was used to design the driving circuit needed for piezoelectric transformer based inverter. Traditionally, an equivalent circuit model was used to simulate the property of the piezoelectric transformer. To verify whether the MOSFET can reach zero voltage switching (ZVS) condition or not, the equivalent circuit model of the piezoelectric transformer must be used to calculate. The equivalent circuit of the piezoelectric transformer includes a capacitance and an inductance, both of which produce the LC resonant circuit. By controlling the internal inductance of the piezoelectric transfer and the dead time of the MOSFET switch, zero voltage switching condition was shown to be achievealbe and practical. It was also shown that the zero voltage switching condition can decrease the switching loss such tha t energy transfer efficiency was improved.
Furthermore, to simplify the conditions that can make MOSFET reach zero voltage switching condition, a small inductance was connected in front the piezoelectric transformer to make sure that the MOSFET work under the zero voltage switching condition. The quasi modal electrode was used to filter out the high frequency voltage that exists within the input voltage.
Combining all design parameters mentioned above, the dissertation attempts to combine traditional mechanic and electric analysis for piezoelectric transformer, which finally leads us to invent a series of approaches that can be used to circumvent all of the prior art. By using quasi-modal electrode and soft switching technology, a coil less piezoelectric based inverter for LCD TV backlight was completed. A full modal multi-layer piezoelectric transformer was also completed to light portable LCD monitor backlight. Finally, the full modal electrode was shown to improve the overall energy transfer efficiency of the piezoelectric based inverter.
致謝 I
中文摘要 V
英文摘要 VIII
目錄 XII
圖目錄 XIV
表目錄 XX
第1章 序論 1
1.1 研究動機 1
1.2 產業環境與契機 2
1.3 壓電變壓器歷史回顧與全球專利分析 7
1.4 論文架構 14

第2章 單層準模態壓電變壓器設計與實驗驗證 33
2.1 基本介紹 33
2.2 單層準模態壓電變壓器理論分析 36
2.3 驅動效率實驗驗證 45
2.4 準模態壓電變壓器與冷陰極燈管的高瓦數特性量測 51
2.5 準模態壓電變壓器的驅動電路製作 57
2.6 結論與未來展望 61

第3章 準模態中央驅動對稱輸出壓電變壓器設計與驗證 62
3.1 基本介紹 62
3.2 單層中央驅動對稱輸出準模態壓電變壓器理論驗證 66
3.3 驅動效率實驗驗證 74
3.4 利用雙輸出電極同時點亮雙冷陰極燈管 79
3.5 中央驅動雙輸出壓電變壓器的高瓦數特性量測 88
3.6 結論與未來展望 97

第4章 結合軟切換(SOFT SWITCHING)的壓電式換流器設計 99
4.1 基本介紹 99
4.2 準模態壓電變壓器的模態濾波特性驗證 102
4.3 具有軟切換技術的壓電式換流器 106
4.4 最佳工作頻率範圍 118
4.5 壓電變壓器PZT-M-53-1的高瓦數工作特性量測 121
4.6 創新無線圈式單層準模態壓電換流器 127
4.7 利用電感作場效電晶體的零電壓切換 131
4.8 利用高階輸入電流作場效電晶體零電壓切換 140
4.9 利用高階輸入電流方式設計創新T5燈管用安定器 147
4.10 結論與未來展望 155

第5章 多層全模態壓電變壓器設計與實驗驗證 158
5.1 基本介紹 158
5.2 多層全模態壓電變壓器的理論分析 161
5.3 驅動效率實驗驗證 171
5.4 全模態壓電變壓器的高瓦數特性量測 177
5.5 利用全模態壓電變壓器點亮300MM的冷陰極燈管 185
5.6 結論與未來展望 192

第6章 結論與未來展望 194
6.1 結論 194
6.2 未來展望 198

參考文獻 199
第一章
[1]Rosen C. A., “Piezoelectric Transformers,” United States Patent, Patent number 2,830,274, April 1958.
[2]Inoue T., “Thickness Mode Vibration Piezoelectric Transformer,” United States Patent, Patent number 5,118,982, June 1992.
[3]Uehara K., Inoue T., Iwamoto A., Ohnishi O. and Sasaki Y., “Piezoelectric Ceramic Transformer,” United States Patent, Patent number 5,278,471, January 1994.
[4]Ohnishi O. and Inoue T., “Piezoelectric Ceramic Transformer,” United States Patent, Patent number 5,440,195, August 1995.
[5]Williams J. M., “Fluorescent-lamp Excitation Circuit Using a Piezoelectric Acoustic Transformer and Methods,” United States Patent, Patent number 5,548,189, August 1996.
[6]Yamamoto M., Sasaki Y., Ochi A., Inoue T. and Hamamura S., “Step-Down Piezoelectric Transformer for AC-DC Converters,” Japanese Journal of Applied Physics, Vol.40, pp.3637-3642, May 2001.
[7]Hamamura S., Ninomiya T., Yamamoto M. and Katsuno M. “Combined PWM and PFM Control for Universal Line Voltage of a Piezoelectric Transformer Off-Line Converter,” IEEE Transactions on Power Electronics, Vol.18, NO.1, January 2003.
[8]F. Yoshiaki, Kumasaka K., Katsuno M., Sato H. and Ino Y., “Piezoelectric Transformer for Cold Cathode Fluorescent Lamp Inverter,” Japanese Journal of Applied Physics, Vol.36, pp.3050-3052, May 1997.
[9]Ishii K., Akimoto N., Tashirio S. and Igarashi H. “Influence of Load Resistance on Higher Harmonic Voltages Generated in a Piezoelectric Transformer,” Japanese Journal of Applied Physics, Vol.37, pp.5330-5333, September 1998.
[10]Sakurai K., Ohnishi K. and Tomikawa Y., “Presentation of a New Equivalent Circuit of a Piezoelectric Transformer under High-Power Operation,” Japanese Journal of Applied Physics, Vol.38, pp.5592-5597, September 1999.
[11]Kawasaki O., “Inverter Power Source Apparatus Using a Piezoelectric Transformer,” United States Patent, Patent number 5,796,213, August 1998.
[12]Satoh H. and Shiotani H., “Inverter Circuit for Lighting a Cold Cathode Tube by the Use of a Piezoelectric Transformer,” United States Patent, Patent number 5,854,543, December 1998.
[13]Noma T. and Morishima Y. “Piezoelectric Transformer Inverter,” United States Patent, Patent number 6,013,969, Jane 2000.
[14]Yamaguchi S. and Furuhashi N. “Method and Circuit for Driving Piezoelectric Transformer,” United States Patent, Patent number 6,268,681, July 2001.
[15]Fujimura T., Ishikawa K. and Toyama M. “Control Circuit and Method for Piezoelectric Transformer,” United States Patent, Patent number 6,198,198, March 2001.
[16]Fujimura T., Ishikawa K. and Toyama M. “System for Driving a Cold-cathode Fluorescent Lamp Connected to a Piezoelectric Transformer,” United States Patent, Patent number 6,239,558, May 2001.
[17]Nakatsuka H., Moritoki K., Asahi T., Okuyama K. and Kawasaki O. “Method and Unit for Driving Piezoelectric Transformer Used for Controlling Luminance of Cold-cathode Tube,” United States Patent, Patent number 6,433,458, August 2002.
[18]Takeda K., Nakatsuka H., Moritoki K. and Yamaguchi T., “Driving Method and Driving Circuit for Piezoelectric Transformer, Cold Cathode Tube Emission Device, Liquid Crystal Panel and Liquid Crystal Panel Built-in Apparatus ,” United States Patent, Patent number 6,509,671, Jane 2003.
[19]Shimamura J., Sakamoto M. and Kamitani K., “Method and Apparatus for Driving Piezoelectric Transformer,” United States Patent, Patent number 6,348,755, February 2002.
[20]Yamamoto M., Shimada Y., Sasaki Y., Inoue T. and Nakamura K., “A Multilayered Piezoelectric Transformer Operating in the Third Order Longitudinal Mode and Its Application for an Inverter,” IEICE TRANS. ELECTRON., Vol.E85-C, NO.10, October 2002.
[21]Lin C. Y. “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 1997.
[22]Lin R. L. “Piezoelectric Transformer Characterization and Application of Electronic Ballast,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 2001.
[23]Baker E. M. “Design of Radial Mode Piezoelectric Transformer for Lamp Ballast Applications,” Master thesis, Department of Electrical Engineering, Virginia Polytechnic Institute, 2002.
[24]Baker E. M., Huang W., Chen D. Y. and Lee F. C. “Radial Mode Piezoelectric Transformer Design for Fluorescent Lamp Ballast Application,” IEEE Transactions on Power Electronics, Vol.20, NO.5, September 2005.
[25]Choi S. J., Lee K. C. and Cho B. H. “Design of Fluorescent Lamp Ballast with PFC Using a Power Piezoelectric Transformer,” IEEE Transactions on Industrial Electronics, Vol.52, NO.6, December 2005.
[26]Flynn A. M. and Sander S. R. “Fundamental Limits on Energy Transfer and Circuit Consideration for Piezoelectric Transformers,” IEEE Transactions on Power Electronics, Vol.17, NO.1, January 2002.
[27]Lee C. K., “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment,” Ph.D. Dissertation, Cornell University, Ithaca, New York, USA, 1987.
[28]Lee C. K., “Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators: PartⅠ. Governing Equations and Reciprocal Relationships,” J. Acoust. Soc. Am., Vol. 87, pp. 1144-1158, March 1990.
[29]Lee C. K., “Piezoelectric Laminates: Theory and Experiments for Distributed Sensors and Actuators”, Intelligent Structural Systems, Kluwer Academic, Netherlands, pp. 75-167, 1992.
[30]Hsu Y. S., Lee C. K., and Hsiao W. H. “Optimizing Piezoelectric Transformer for Maximum Power Transfer,” Smart Material and Structure, Vol. 12, pp. 373-383., June 2003.
[31]Chou C. W., “Multi-load Piezoelectric Transformation Circuit Driver Module,” United States Patent, Patent number 6,724,126, April 2004.
[32]蕭文欣,創新壓電變壓器/換能器之理論與實驗:擬模態致動器及波傳設計理念之應用,國立台灣大學應用力學研究所碩士論文,2000年7月。
[33]Katz H. W., Solid State Magnetic and Dielectric Devices, Wiley & Sons, New York, pp.94-126, 1959.
[34]Royer D. and Dieulesaint E., Elastic Wave in Solid I & II, Springer, New York, pp.5-40, 1999.
[35]林逸彥,壓電變壓器設計流程相關之理論建模與實驗驗證,國立台灣大學應用力學研究所碩士論文,2004年7月。
[36]Severns R. P., Bloom G. “Modern DC-TO-DC Switch Mode Power Converter Circuits,” VAN NOSTRAND REINHOLD COMPANY, 1985.
[37]吳文中,高功率力電轉換系統之建模與驗證,國立台灣大學應用力學研究所博士論文,2003年7月。
[38]Laoratanakul P., Carazo A. V., Bouchilloux P. and Uchino K. “Unipoled Disk-type Piezoelectric Transformers,” Japanese Journal of Applied Physics, Vol.41, pp.1446-1450, 2002.
[39]Priya S., Ural S., Kim H. W., Uchino K. and Ezaki T. “Multilayer Unipoled Piezoelectric Transformers,” Japanese Journal of Applied Physics, Vol.43, pp.3503-3510, 2004.
[40]Koc B., Gao Y. and Uchino K. “Design of a Circular Piezoelectric Transformer with Crescent-Shaped Input Electrodes,” Japanese Journal of Applied Physics, Vol.42, pp.509-514, 2003.
第二章
[1]奇美電子,2006奇美電子數位電視科技論壇(CMO Display Technology Forum),台北國際會議中心,2006年4月。
[2]Lin C. Y. “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 1997.
[3]Lin R. L. “Piezoelectric Transformer Characterization and Application of Electronic Ballast,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 2001.
[4]Flynn A. M. and Sander S. R. “Fundamental Limits on Energy Transfer and Circuit Consideration for Piezoelectric Transformers,” IEEE Transactions on Power Electronics, Vol.17, NO.1, January 2002.
[5]Lee C. K., “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment,” Ph.D. Dissertation, Cornell University, Ithaca, New York, USA, 1987.
[6]Hsu Y. S., Lee C. K., and Hsiao W. H. “Optimizing Piezoelectric Transformer for Maximum Power Transfer,” Smart Material and Structure, Vol. 12, pp. 373-383., June 2003.
[7]Hsu Y. S., Lee C. K. and Hsiao W. H., “Electric and Mechanical Fully Coupled Theory and Experimental Verification of Rosen-Type Piezoelectric Transformers” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, NO.10, October 2005.
[8]Huang Y. T., Hsiao W. H., Hsu Y. S., and Lee C. K., “High-power Backlight Inverter for LCD-TV using Piezoelectric Transformers,” Proceedings of Fifteenth International Conference on Adaptive Structures and Technologies 2005, October 2005.
[9]蕭文欣,創新壓電變壓器/換能器之理論與實驗:擬模態致動器及波傳設計理念之應用,國立台灣大學應用力學研究所碩士論文,2000年7月。
[10]Katz H. W. “Solid State Magnetic and Dielectric Devices,” Wiley New York, pp.94-126, 1959.
[11]Yamamoto M., Shimada Y., Sasaki Y., Inoue T. and Nakamura K., “A Multilayered Piezoelectric Transformer Operating in the Third Order Longitudinal Mode and Its Application for an Inverter,” IEICE TRANS. ELECTRON., Vol.E85-C, NO.10, October 2002.
[12]Yamamoto M., Sasaki Y., Ochi A., Inoue T. and Hamamura S., “Step-Down Piezoelectric Transformer for AC-DC Converters,” Japanese Journal of Applied Physics, Vol.40, pp.3637-3642, May 2001.
[13]新巨企業股份有限公司,壓電陶瓷反流器(Piezo Ceramics Inverter),2005年國際光電大展-傑出光電產品獎,2005年1月。
[14]Agilent Technologies Japan, Ltd., 2001, Agilent 4294A Precision Impedance Analyzer Operation Manual, Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241, Japan
[15]Lee C. K., Wu G. Y., Teng Thomas C. T., Wu W. J., Lin C. T., Hsiao W. H., Shih H. C., Wang J. S., Lin Sam S. C., Lin Colin C., Lee C. F. and Y. C. Lin, “A High Performance Doppler Interferometer for Advanced Optical Storage Systems,” Japanese Journal of Applied Physics, Vol. 38, Part 1, No. 3B, pp. 1730-1741, March 1999.
[16]國防工業發展基金會委託學術機構研究計畫,電光效應應用於高電壓分壓器研究,期末報告說明書,2004年6月。
[17]Sakurai K., Ohnishi K. and Tomikawa Y., “Presentation of a New Equivalent Circuit of a Piezoelectric Transformer under High-Power Operation,” Japanese Journal of Applied Physics, Vol.38, pp.5592-5597, September 1999.
[18]Shimamura J., Sakamoto M. and Kamitani K., “Method and Apparatus for Driving Piezoelectric Transformer,” United States Patent, Patent number 6348755, February 2002.
[19]吳文中,高功率力電轉換系統之建模與驗證,國立台灣大學應用力學研究所博士論文,2003年7月。
[20]威力盟電子股份有限公司網站:http://www.wellypower.com.tw/
[21]Kawasaki O., “Inverter Power Source Apparatus Using a Piezoelectric Transformer,” United States Patent, Patent number 5796213, August 1998.
[22]Satoh H. and Shiotani H., “Inverter Circuit for Lighting a Cold Cathode Tube by the Use of a Piezoelectric Transformer,” United States Patent, Patent number 5854543, December 1998.
[23]Noma T. and Morishima Y. “Piezoelectric Transformer Inverter,” United States Patent, Patent number 6013969, Jane 2000.
[24]Yamaguchi S. and Furuhashi N. “Method and Circuit for Driving Piezoelectric Transformer,” United States Patent, Patent number 6268681, July 2001.
[25]Fujimura T., Ishikawa K. and Toyama M. “Control Circuit and Method for Piezoelectric Transformer,” United States Patent, Patent number 6198198, March 2001.
[26]Fujimura T., Ishikawa K. and Toyama M. “System for Driving a Cold-cathode Fluorescent Lamp Connected to a Piezoelectric Transformer,” United States Patent, Patent number 6239558, May 2001.
[27http://www.ortodoxism.ro/datasheets/texasinstruments/ucc3977.pdf, Multi-Topology Piezoelectric Transformer Controller, TEXASINSTRUMENTS
[28]http://www.irf.com/product-info/datasheets/data/ir2104.pdf, Half-Bridge Driver, International Rectifier.
[29]http://www.100y.com.tw/pdf_file/IRF840.pdf, Power MOSFET, International Rectifier.

第三章
[1]Huang Y. T., Hsiao W. H., Hsu Y. S., and Lee C. K., “High-power Backlight Inverter for LCD-TV using Piezoelectric Transformers,” Proceedings of Fifteenth International Conference on Adaptive Structures and Technologies 2005, October 2005.
[2]奇美電子,2006奇美電子數位電視科技論壇(CMO Display Technology Forum),台北國際會議中心,2006年4月。
[3]Abe T. (Hitachi Metals, Ltd.), “Piezoelectric Transformer and Power Converting Apparatus Employing the same,” United States Patent, Patent number 5751092, May 1998.
[4]Kim J. S. and Youm J. H. (Samsung Electro-Mechanics Co., Ltd.,), “Rosen type Piezoelectric Transformer with Multiple Output Electrodes and Stabilizer for Multiple Light Source Using that,” United States Patent, Patent number 6603272, August 2003.
[5]Takeda K., Nakatsuka H., Yamaguchi T., Oknyama K. and Moritoki K.(Matsushita Electric Industrial Co., Ltd.), “Piezoelectric Transformer,” United States Patent, Patent number 6812623, November 2004.
[6]Chou C. W., “Multi-load Piezoelectric Transformation Circuit Driver Module,” United States Patent, Patent number 6724126, April 2004.
[7]新巨企業股份有限公司,壓電陶瓷反流器(Piezo Ceramics Inverter),2005年國際光電大展-傑出光電產品獎,2005年1月。
[8]蕭文欣,創新壓電變壓器/換能器之理論與實驗:擬模態致動器及波傳設計理念之應用,國立台灣大學應用力學研究所碩士論文,2000年7月。
[9]Agilent Technologies Japan, Ltd., March 2000, “Agilent 4395A Network/ Spectrum/ Impedance Analyzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
[10]Agilent Technologies Japan, Ltd., January 2001, “Agilent 4294A Precision Impedance Analyzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
[11]Yamaguchi S. and Furuhashi N. “Method and Circuit for Driving Piezoelectric Transformer,” United States Patent, Patent number 6268681, July 2001.
[12]林柏丞,相位控制之壓電式背光反流器,國立台灣大學電子工程學研究所碩士論文,2005年7月。
[13]Lin C. Y. “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 1997.
[14]許聿翔,壓電系統其力電場互動之理論與實驗-壓電變壓器、柔性結構控制及自由落體感應子之創新突破基礎,國立台灣大學應用力學研究所碩士論文,2002年7月。
[15]http://www.ortodoxism.ro/datasheets/texasinstruments/ucc3977.pdf, Multi-Topology Piezoelectric Transformer Controller, TEXASINSTRUMENTS
[16]http://www.irf.com/product-info/datasheets/data/ir2104.pdf, Half-Bridge Driver, International Rectifier.
[17]http://www.irf.com/product-info/datasheets/data/irf540n.pdf,
[18]Power MOSFET, International Rectifier.
[19]http://www.irf.com/product-info/datasheets/data/ir2153.pdf,
[20]Self-Oscillating Half-Bridge Driver, International Rectifier
[21]Nakatsuka H., Moritoki K., Asahi T., Okuyama K. and Kawasaki O., “Method and Unit for Driving Piezoelectric Transformer Used for Controlling Luminance of Cold-cathode Tube,” United States Patent, Patent number 6433458, August 2002.
[22]Takeda K., Nakatsuka H. and Moritoki K., “Driving Circuit for Piezoelectric Transformer, Cold Cathode Tube Light-Emitting Apparatus, Liquid Crystal Panel and Device with Built-in Liquid Crystal Panel,” United States Patent, Patent number 7,038,354, May 2006

第四章
[1]Severns R. P. and Bloom G. “Modern DC-TO-DC Switch Mode Power Converter Circuits,” VAN NOSTRAND REINHOLD Company, 1985.
[2]Pressman A. I., “Switching Power Supply Design,” The McGraw-Hill Companies, Inc., 1999.
[3]Lin R. L. “Piezoelectric Transformer Characterization and Application of Electronic Ballast,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 2001.
[4]Baker E. M. “Design of Radial Mode Piezoelectric Transformer for Lamp Ballast Applications,” Master thesis, Department of Electrical Engineering, Virginia Polytechnic Institute, 2002.
[5]Baker E. M., Huang W., Chen D. Y. and Lee F. C. “Radial Mode Piezoelectric Transformer Design for Fluorescent Lamp Ballast Application,” IEEE Transactions on Power Electronics, Vol.20, NO.5, September 2005.
[6]Koc B., Gao Y. K. and Uchino K., “Design of a Circular Piezoelectric Transformer with Crescent-shaped Input Electrodes,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 42 (2A), 509-514, February 2003.
[7]Manuspiya S., Laoratanakul P. and Uchino K., “Integration of a Piezoelectric Transformer and an Ultrasonic Motor,” ULTRASONICS 41(2):83-87, March 2003.
[8]Priya S., Ural S., Kim H. W., Uchino K. and Ezaki T., “Multilayer Unipoled Piezoelectric Transformers,” Japanese Journal of Applied Physics, Vol.43, No.6A, pp.3503-3510, 2004.
[9]Flynn A. M. and Sander S. R. “Fundamental Limits on Energy Transfer and Circuit Consideration for Piezoelectric Transformers,” IEEE Transactions on Power Electronics, Vol.17, NO.1, January 2002.
[10]Huang Y. T., Hsiao W. H., Hsu Y. S., and Lee C. K., “High-power Backlight Inverter for LCD-TV using Piezoelectric Transformers,” Proceedings of Fifteenth International Conference on Adaptive Structures and Technologies 2005, October 2005.
[11]Lin C. Y., “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 1997.
[12]Yamamoto M., Shimada Y., Sasaki Y., Inoue T. and Nakamura K., “A Multilayered Piezoelectric Transformer Operating in the Third Order Longitudinal Mode and Its Application for an Inverter,” IEICE TRANS. ELECTRON., Vol.E85-C, NO.10, October 2002.
[13]Yamamoto M., Sasaki Y., Ochi A., Inoue T. and Hamamura S., “Step-Down Piezoelectric Transformer for AC-DC Converters,” Japanese Journal of Applied Physics, Vol.40, pp.3637-3642, May 2001.
[14]Lin R. L., Lee F. C., Baker E. M. and Chen D. Y., “Inductor-less Piezoelectric Transformer Electronic Ballast for Linear Fluorescent Lamp,” Applied Power Electronics Conference and Exposition, 2001.
[15]Bronstein S. and Yaakov S. B., “Design Considerations for Achieving ZVS in a Half Bridge Inverter that Drives a Piezoelectric Transformer with No Series Inductor, ” IEEE Power Electronics Specialists Conf., pp. 585-590, 2002
[16]Sakurai K., Ohnishi K. and Tomikawa Y., “Presentation of a New Equivalent Circuit of a Piezoelectric Transformer under High-Power Operation,” Japanese Journal of Applied Physics, Vol.38, pp.5592-5597, September 1999.
[17]吳文中,高功率力電轉換系統之建模與驗證,國立台灣大學應用力學研究所博士論文,2003年7月。
[18]Shimamura J., Sakamoto M. and Kamitani K., “Method and Apparatus for Driving Piezoelectric Transformer,” United States Patent, Patent number 6348755, February 2002.
[19]http://www.ortodoxism.ro/datasheets/irf/ir2184.pdf, Half-Bridge Driver, International Rectifier.
[20]Huang C. H., Lin Y. C. and Ma C. C., “Theoretical Analysis and Experimental Measurement for Resonant Vibration of Piezoelectric Circular Plates,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.51, No.1, January 2004.
[21]Lin Y. C. and Ma C. C., “Experimental Measurement and Numerical Analysis on Resonant Characteristics of Piezoelectric Disks with Partial Electrode Designs,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.51, No.8, August 2004.
[22]Yoo J., Yoon K., Hwang S., Suh S., Kim J. and Yoo C. “Electrical Characteristics of High Power Piezoelectric Transformer for 28W Fluorescent Lamp,” Sensors and Actuators A, PP.132-137, 2001
[23]Laoratanakul P., Carazo A. V., Bouchilloux P. and Uchino K., “Unipoled Disk-type Piezoelectric Transformers,” Japanese Journal of Applied Physics, Vol.41, pp.1446-1450, March 2002.
[24]Priya S. “High Power Universal Piezoelectric Transformer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.53, No.1, January 2006.
[25]Chi S. J., Lee K. C. and Cho B. H., “Design of Fluorescent Lamp Ballast with PFC Using a Power Piezoelectric Transformer,” IEEE Transactions on Industrial Electronics, Vol.52, No.6, December 2005.

第五章
[1]矩創科技,2006平面顯示器元件產品技術獎-具電流平衡之高壓CCFL TV Inverter報名參選資料,2006年3月。
[2]Yamaguchi S. and Furuhashi N. “Method and Circuit for Driving Piezoelectric Transformer,” United States Patent, Patent number 6268681, July 2001.
[3]林柏丞,相位控制之壓電式背光反流器,國立台灣大學電子工程學研究所碩士論文,2005年7月。
[4]Inoue T., Ohnishi O. and Ohde N., “Thickness Mode Vibration Piezoelectric Transformer,” United States Patent, Patent number 5,118,982, June 1992.
[5]Sasaki Y., Uehara K. and Inoue T., “Piezoelectric Ceramic Transformer Being Driven with Thickness Extensional Vibration,” United States Patent, Patent number 5,241,236, August 1993.
[6]Uehara K., Inoue T., Iwamoto A., Ohnishi O. and Sasaki Y., “Piezoelectric Ceramic Transformer,” United States Patent, Patent number 5,278,471, January 1994.
[7]Ohnishi O. and Inoue T., “Piezoelectric Ceramic Transformer,” United States Patent, Patent number 5,440,195, August 1995.
[8]Williams J. M., “Fluorescent Lamp Excitation Circuit Using a Piezoelectric Acoustic Transformer and Methods For Using Same,” United States Patent, Patent number 5,548,189, August 1996.
[9]Kawashima S., “Hardware Arrangement and Method of Driving a Piezoelectric Transformer,” United States Patent, Patent number 5,654,605, August 1997.
[10]Shimada Y., “Piezoelectric Transformer Driving Circuit,” United States Patent, Patent number 5,705,877, Jane 1998.
[11]Zaitsu T., “Converter Wherein a Piezoelectric Transformer Input Signal is Frequency Modulated by a Pulse Width Modulated Signal,” United States Patent, Patent number 5,739,622, April 1998.
[12]Kawasaki O., “Inverter Power Source Apparatus Using a Piezoelectric Transformer,” United States Patent, Patent number 5,796,213, August 1998.
[13]Yamamoto M., Shimada Y., Sasaki Y., Inoue T. and Nakamura K., “A Multilayered Piezoelectric Transformer Operating in the Third Order Longitudinal Mode and Its Application for an Inverter,” IEICE TRANS. ELECTRON., Vol.E85-C, NO.10, October 2002.
[14]Ishii K., Akimoto N., Tashirio S. and Igarashi H. “Influence of Load Resistance on Higher Harmonic Voltages Generated in a Piezoelectric Transformer,” Japanese Journal of Applied Physics, Vol.37, pp.5330-5333, September 1998.
[15]Sakurai K., Ohnishi K. and Tomikawa Y., “Presentation of a New Equivalent Circuit of a Piezoelectric Transformer under High-Power Operation,” Japanese Journal of Applied Physics, Vol.38, pp.5592-5597, September 1999.
[16]Lee C. K., “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment,” Ph.D. Dissertation, Cornell University, Ithaca, New York, USA, 1987.
[17]Lee C. K., “Piezoelectric Laminates: Theory and Experiments for Distributed Sensors and Actuators”, Intelligent Structural Systems, Kluwer Academic, Netherlands, pp. 75-167, 1992.
[18]Hsu Y. S., Lee C. K., and Hsiao W. H. “Optimizing Piezoelectric Transformer for Maximum Power Transfer,” Smart Material and Structure, Vol. 12, pp. 373-383., June 2003.
[19]Huang Y. T., Wu W. J., Wang Y. C. and Lee C. K., “Multi-layer Modal Actuator-based Piezoelectric Transformers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (accepted).
[20]Agilent Technologies Japan, Ltd., January 2001, “Agilent 4294A Precision Impedance Analyzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
[21]Katz H. W., Solid State Magnetic and Dielectric Devices, Wiley & Sons, New York, pp.94-126, 1959.
[22]Agilent Technologies Japan, Ltd., March 2000, “Agilent 4395A Network/ Spectrum/ Impedance Analyzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
[23]Lin R. L. “Piezoelectric Transformer Characterization and Application of Electronic Ballast,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 2001.
[24]Lin C. Y. “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊