跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許進成
研究生(外文):Jin-Chen Hsu
論文名稱:表面波與板波於二維壓電聲子晶體中傳播特性之研究
論文名稱(外文):Propagation of Surface and Lamb Waves in Two-Dimensional Piezoelectric Phononic Crystals
指導教授:吳政忠
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:173
中文關鍵詞:聲子晶體晶格表面聲波板波壓電晶體平面波展開法局部共振
外文關鍵詞:Phononic CrystalLatticeSurface Acoustic WaveLamb WavePlane Wave Expansion MethodPiezoelectric CrystalLocal Resonance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
聲子晶體乃是一種複合材料,其結構包含均質的填充物週期性地排列於具有不同物理性質的基底材料中。兩種組成聲子晶體的材料在物理性質上的差異包括質量密度和彈性勁度等。當聲波在聲子晶體中傳播,會因週期性填充物的散射而阻擋特定頻率範圍的聲波通過或將能量侷限在聲子晶體的結構中。藉由這些特性,許多的文獻已經發表了聲子晶體在操控聲波行為的應用,這些應用包括聲波反射鏡、聲波折射元件、高效率的波導、可調式濾波器和雙工器等。此外,在高頻元件的應用及學術研究的興趣上,探討由壓電材料所組成的聲子晶體,以及表面波與板波於聲子晶體結構中的傳播特性具有其重要性。
本論文旨在研究徹體波、表面波和板波於含有壓電材料之聲子晶體結構中傳播之特性及行為。首先,本文簡短的介紹用於描述週期性結構的基本數學定義。接著,整合三維平面波展開法及壓電晶體波傳理論,本文發展一套數學理論作為分析工具,並加以數值的計算結果來分析聲波在壓電聲子晶體中的頻散關係或頻帶結構;且進一步探討如聲子晶體的晶格對稱性、填充材料之填充率、材料性質的對比及壓電效應對於聲波波傳及頻溝之影響。
文中特別針對表面波及板波模態進行分析。其中包含了週期性結構所引致之表面波機電耦合係數之頻散性質和虛擬表面波的產生。並且,於氧化鋅和硫化鎘所組成之二維壓電聲子晶體中亦發現Bleustein-Gulyaev表面波之傳播及其頻帶反折效應;此種表面波僅存在於特定的壓電介質中。再者,針對具有兩個平行表面的平板,本文藉由引入另一邊界條件於三維平面波展開法中,使得平面波展開法得以進一步用計算板波於平板結構的聲子晶體中的傳播特性。分析結果顯示,除了聲子晶體的晶格對稱性、填充材料之填充率、材料性質對比的影響外,板波於聲子晶體中的頻溝大小乃至其存在與否與平板的厚度密切相關。
最後,本文結合Mindlin的板理論和平面波展開法來分析低階的板波模態於聲子晶體平板中的特性。相較於三維平面波展開法,以Mindlin板理論為基礎的平面波展開法在計算板波頻散曲線上所需的時間上有相當大幅的改善;因此,當聲子晶體平板的填充物及基材之間的材料性質差異性大或聲子晶體平板含有如方柱等具不平滑輪廓之填充物時,此方法更適用於這些結構的波傳分析。這些結構在計算上需要較多的平面波展開數量才能得到良好的收斂性,當計算中包含有較大量的平面波展開數量時,此方法可將所需的計算時間縮短至可接受的範圍。利用此方法,本文亦進一步地計算及探討二維聲子晶體平板的局部共振現象及其極低頻區域的頻溝形成。
綜言之,本文發展了用於分析於二維壓電聲子晶體結構中傳播的徹體波、表面波以及板波特性的平面波展開法,並藉此方法計算及探討這些形式的聲波在其結構中的特徵。
ABSTRACT
Phononic crystals are composite materials which consist of homogeneous elastic inclusions distributed periodically in a background medium characterized by different physical properties, such as mass density and elastic stiffness. Thus far, numbers of released researches have demonstrated the possible usage of phononic crystals for acoustic manipulations, such as acoustic mirrors/refractive devices, high-efficiency waveguides with frequency modulation in the transmittivity, tunable filters, and de-multiplexers, etc, based on the localization and the formation of frequency band gap of acoustic waves in such periodic composites. For high-frequency applications and academic interests, phononic crystals comprised of piezoelectric materials and the propagation of guided waves like the surface modes and plate modes in such composites are important to study.
In this study, the propagation of bulk acoustic waves, surface acoustic waves, and Lamb/plate waves in phononic-crystal structures containing piezoelectric constituents is theoretically investigated. First, the basis in the description of periodic structures is briefly introduced. Next, the full three-dimensional plane wave expansion (PWE) method is utilized to develop the mathematical formulation by integrating the method into the governing field equations of waves in piezoelectric solids. Then the nume- rical calculations are presented to analyze the dispersion relations or the frequency band structures of acoustic waves and to discuss the effects of lattice symmetries, filling fractions of inclusions, material contrasts, and piezoelectricity on the complete frequency band gaps.
In particular, the characteristics of surface modes and plate modes in phononic- crystal structures are probed. The periodicity of the structure results in a dispersive property for the electromechanical coupling coefficients of surface waves and the existence of pseudosurface waves. In addition, the Bleustein-Gulyaev surface wave, which has no counterpart in a non-piezoelectric medium, in ZnO/CdS piezoelectric phononic crystal and the folding effect are found. Moreover, propagation of Lamb waves in plate structure created by a phononic crystal is analyzed by introducing boundary conditions for another plane surface into the PWE formulation. In addition to the lattice symmetries, filling fractions, and material contrasts, the existence and the width of complete band gaps of Lamb waves are crucially affected by the ratio of the plate thickness to the lattice period.
Finally, Mindlin’s plate theory is applied to address the problem of lower order Lamb modes in a phononic-crystal plate. Compared to the full three-dimensional PWE method, Mindlin’s theory based PWE formulation has excellent performance in coping with the phononic-crystal plate consisting of constituents with large acoustic mismatch and/or inclusions with a non-smooth contour in their cross section such as square rods that need to sum over numerous plane waves to ensure the convergence by reducing the computation time considerably. The frequency band structures of locally resonant phononic-crystal plates and subfrequency band gaps are calculated as well.
In brief, the PWE methods to analyze the propagation of bulk waves and guided waves in two-dimensional piezoelectric phononic-crystal structures are formulated, and their characteristics are investigated and discussed in this work.
CONTENTS
Acknowledgement......i
Chinese Abstract......iii
Abstract......v
Contents......vii
Symbols......xi
List of Figures......xv
List of Tables......xxi
1. Introduction......1
1.1 Motives......1
1.2 Literature Review......3
1.3 Outline of the Dissertation 7
2. Crystal Lattices and Theory of Piezoelectric Wave Propagation......11
2.1 Bravais Lattice......11
2.2 Wigner-Seitz Primitive Unit Cell......12
2.3 Primitive Lattice and Reciprocal Lattice in Two Dimensions......13
2.4 Brillouin Zones of a Two-dimensional Lattice......14
2.5 Plane Wave Expansion Method......15
2.6 Piezoelectric Waves in a Two-dimensional Periodic Structure......16
2.6.1 Piezoelectric Constitutive Relations......17
2.6.2 Equations of Motion and Poisson’s Equation......19
2.6.3 Eigenvalue Problem 20
2.6.4 Mixed and Transverse Polarization Modes......23
3. Bulk Waves in Two-dimensional Piezoelectric Phononic Crystals......33
3.1 Square, Triangular, and Hexagonal Lattices......33
3.1.1 Square Lattice......33
3.1.2 Triangular Lattice......34
3.1.3 Hexagonal Lattice......35
3.2 Structure Factors......36
3.3 Band Structures of Bulk Piezoelectric Waves......37
3.3.1 Bi12GeO20/Epoxy Piezoelectric Phononic Crystal......38
3.3.2 PZT-4/Epoxy Piezoelectric Phononic Crystal......40
3.3.3 Air/X-Cut LiNbO3 Piezoelectric Phononic Crystal......41
3.3.4 Air/ST-Cut Quartz Piezoelectric Phononic Crystal......43
3.4 Effect of Piezoelectricity on the Band Structures......44
4. Surface Waves in Two-dimensional Piezoelectric Phononic Crystals......61
4.1 PWE Formulation for Surface Waves......61
4.1.1 Eigenvalue Problem of Surface Wave......61
4.1.2 Surface Boundary Conditions......62
4.2 Band Structures of Piezoelectric Surface Waves......64
4.3 Displacement Fields of Piezoelectric Surface Waves......66
4.4 Pseudosurface Waves 66
4.5 Electromechanical Coupling Coefficients 67
4.6 Bleustein-Gulyaev Surface Waves 68
4.6.1 BG Waves in a Homogeneous Piezoelectric Crystal......69
4.6.2 BG Waves in ZnO/CdS Piezoelectric Phononic Crystal......72
5. Lamb Waves in Two-dimensional Phononic-crystal Plates......89
5.1 PWE Formulation for Lamb Waves in a Phononic-crystal Plate......90
5.1.1 General Solution of Lamb Wave......90
5.1.2 Surface Boundary Conditions......90
5.2 Lamb Waves in a Homogeneous Piezoelectric Plates......92
5.2.1 Dispersion Curves......92
5.2.2 Modes......93
5.3 Band Structures of Lamb Waves in Phononic-crystal Plates......94
5.3.1 Elastic Phononic-crystal Plate......94
5.3.2 Piezoelectric Phononic-crystal Plate......96
5.4 Effect of Plate Thickness on the Band Structures......97
6. Mindlin’s Plate Theory Based PWE Method for Lower Order Lamb Modes......109
6.1 Mindlin’s Theory Based PWE Formulation......110
6.1.1 Mindlin’s Plate Theory......110
6.1.2 Application of PWE Method to Mindlin’s Theory......114
6.2 Calculations of Frequency Band Structure ......116
6.2.1 Solid/Solid Phononic-crystal Thin Plate......116
6.2.2 Air/Solid Phononic-crystal Thin Plate......119
6.3 Locally Resonant Phononic-crystal Thin Plate......120
6.3.1 Two-component Phononic-crystal Thin Plate......120
6.3.2 Three-component Phononic-crystal Thin Plate......124
7. Conclusions and Prospects......141
7.1 Conclusions......141
7.2 Prospects......143
Appendix A. Proof of Bloch Theorem for Piezoelectric Phononic Crystal......147
Appendix B. Category of Piezoelectric Materials......149
Appendix C. Matrix Components of the Matrix: M......155
Appendix D. List of Used Material Constants......159
Appendix E. Matrix Components of the Matrix: D......161
References......165
Vita......173
REFERENCES
1. L. Rayleigh, “On wave propagating along the plane surface of an elastic solid,” Proc. Lond. Math. Soc. 17, 4 (1985).
2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2169 (1987).
4. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composite,” Phys. Rev. Lett. 71, 2022 (1993).
5. M. M. Sigalas and E. N. Economou, “Elastic and acoustic band structure,” J. Sound Vib. 158, 377 (1992).
6. M. M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” J. Solid State Commun. 86, 141 (1993).
7. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composite,” Phys. Rev. B. 49, 2313 (1994).
8. D. Bria and B. Djafari-Rouhani, “Omnidirectional elastic band gap in finite lamellar structures,” Phys. Rev. E. 66, 056609 (2002).
9. M. Kafesaki, M. M. Sigalas, and N. Garcia, “Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials,” Phys. Rev. Lett. 85, 4044 (2000).
10. Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, “Tunable filtering and demultiplexing in phononic crystals with hollow cylinders,” Phys. Rev. E. 69, 046608 (2004).
11. F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, and J. Sanchez-Dehesa, “Refractive acoustic devices for airborne sound,” Phys. Rev. Lett. 88, 023902 (2002).
12. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
13. L. Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philsosphical Magazine 24, 145 (1887).
14. G. Floquet, “Sur les equations differentielles linearies a coefficients periodi- ques,” Ann. Ecole Norm. Sup. 12, 47 (1883).
15. F. Bloch, “Uber die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555 (1928).
16. Y. Tanaka and S. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. E. 58, 7958 (1998).
17. X. Zhang, T. Jackson, E. Lafond, P. Deymier, and J. O. Vasseur, “Evidence of surface acoustic wave band gaps in the phononic crystal created on thin plates,” Appl. Phys. Lett. 88, 041911 (2006).
18. M. Kafesaki and E. N. Economou, “Multiple-scattering theory for three- dimensional periodic acoustic composites,” Phys. Rev. B. 60, 11993 (1999).
19. J. Mei, Z. Liu, J. Shi, and D. Tian, “Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band- structure calculations,” Phys. Rev. B 67, 245107 (2003).
20. D. Garcia-Pablos, M. Sigalas, F. R. Montero de Espinosa, M. Torres, M. Kafesaki, and N. Garcia, “Theory and experiments on elastic band gaps,” Phys. Rev. Lett. 84, 4349 (2000).
21. P.-F. Hsieh, T.-T. Wu and J.-H. Sun, “Three-dimensional phononic band gap calculations using the FDTD Method and a PC Cluster system,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 53, 148 (2006).
22. C. Goffaux and J. Sanchez-Dehesa, “Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials,” Phys. Rev. B. 67, 144301 (2003).
23. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B. 62, 278 (2000).
24. R. Sainidou, N. Stefanou, and A. Modinos “Green’s function formulism for phononic crystals,” Phys. Rev. B. 69, 064301 (2004).
25. Z. Hou, X. Fu, and Y. Liu, “Calculational method to study the transmission properties of phononic crystals,” Phys. Rev. B. 70, 014304 (2004).
26. G. Wang, J. Wen, Y. Liu, and X. Wen, “Lumped-mass method for the study of band structure in two-dimensional phononic crystals,” Phys. Rev. B 69, 184302 (2004).
27. F. R. Montero de Espinoza, E. Jimenez, and M. Torres, “Ultrasonic band gap in a periodic two-dimensional composite,” Phys. Rev. Lett. 80, 1208 (1998).
28. M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and N. Garcia, “Sonic band gaps in finite elastic media: Surface states and localization phenomena in linear and and point defects,” Phys. Rev. Lett. 82, 3054 (1999).
29. R. E. Vines, J. P. Wolfe, and A. V. Every, “Scanning phononic lattices with ultrasound,” Phys. Rev. B 60, 11871 (1999).
30. T. Gorishnyy, C. K. Ullal, M. Maldvan, G. Fytas, and E. L. Thomas, “Hyper- sonic phononic crystals,” Phys. Rev. Lett. 94, 115501 (2005).
31. T.-T. Wu, Z.-G. Huang, and S.-Y. Liu, “Surface acoustic wave band gaps in micro-machined air/silicon phononic structures—theoretical calculation and experiment,” Zeitschrift für Kristallographie, 220, 841 (2005).
32. T.-T. Wu, L.-C. Wu, and Z.-G. Huang, “Frequency band-gap measurment of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers,” J. App. Phys. 97, 094916 (2005).
33. S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude, “Evidence for complete surface wave band gap in a piezoelectric phononic crystal,” Phys. Rev. E 73, 065601 (2006)
34. Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B 62, 2446 (2000).
35. Y. Tanaka, Y. Tomoyasu, and S. Tamura, “Band structure of acoustic waves in phononic lattice: Two-dimensional composites with large acoustic mismatch,” Phys. Rev. B 62, 7387 (2000).
36. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials” Science 289, 1734 (2000).
37. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, “Experimental and theoretical evidence for existence of absolute acoustic band gaps in two-dimensional solid phononic crystals,” Phys. Rev. Lett. 86, 3012 (2001).
38. M. Wilm, S. Ballandras, V. Laude, and T. Pastureaud, “A full 3D plane-wave- expansion model for 1-3 piezoelectric composite structures,” J. Acoust. Soc. Am. 112, 943 (2002).
39. R. Sainidou, N. Stefanou, and A. Modinos, “Formation of absolute frequency gaps in three-dimensional solid phononic crystals,” Phys. Rev. B 66, 212301 (2002).
40. H. Zhao, Y. Liu, G. Wang, J. Wen, D. Yu, X. Han, and X. Wen, “Resonance modes and gap formation in a two-dimensional solid phononic crystal,” Phys. Rev. B 72, 012301 (2005).
41. L. Sanchis, A. Hakansson, F. Cervera, and J. Sánchez-Dehesa “Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air,” Phys. Rev. B 67, 035422 (2003).
42. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 314301 (2003).
43. G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-dimensional locally resonant phononic crystals with binary structures,” Phys. Rev. Lett. 93, 154302 (2004).
44. J.-H. Sun and T.-T. Wu, “Analyses of mode coupling in joined parallel phononic crystal waveguide,” Phys. Rev. B 71, 174303 (2005).
45. T.-T. Wu, Z.-G. Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B 69, 094301 (2004).
46. T.-T. Wu and J.-C. Hsu, “Band gaps and electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric crystal,” Phys. Rev. B 71, 064303 (2005).
47. V. Laude, M. Wilm, S. Benchabane, and A. Khelif, “Full band gap for surface waves in piezoelectric phononic crystal,” Phys. Rev. E 71, 036607 (2005).
48. J.-C. Hsu and T.-T. Wu, “Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 53, 1169 (2006).
49. J.-C. Hsu and T.-T. Wu, “Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates,” Phys. Rev. B 74, 144303 (2006).
50. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibd, and V. Laude, “Complete band gaps in two-dimensional phononic crystal slabs,” Phys. Rev. E 74, 046610 (2006).
51. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learing, Singarpore, 1976).
52. L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications, Inc., New York, 2003).
53. D. Royer and E. Dieulesaint, Elastic Wave in Solid I: Free and Guided Propagation (Springer-Verlag, Berlin, 2000).
54. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger Publishing Company, Florida, 1990).
55. Y. Tanaka and S. Tamura, “Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattice consisting of aluminum and a polymer,” Phys. Rev. B 60, 13294 (1999).
56. J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, and P. A. Deymier, “Acoustic band gaps in fiber composite materials of boron mitride structure,” J. Phys: Condens. Matter 9, 7327 (1999).
57. C. Li, X. Han, and X. Wen, “Band-structure results for elastic waves interpreted with multiple-scattering theory,” Phys. Rev. B 74, 153101 (2006).
58. C. Goffaux and J. P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Phys. Rev. B 64, 075118 (2001).
59. Z. Hou, X. Fu, and Y. Liu, “Singularity of Bloch theorem in the fluid/solid phononic crystal,” Phys. Rev. B 73, 024304 (2006).
60. K. A. Ingebrigtsen, “Surface waves in piezoelectrics,” J. Appl. Phys. 40, 2681 (1969).
61. J. L. Bleustein, “A new surface wave in piezoelectric materials,” Appl. Phys. Lett. 13, 412 (1968).
62. Y. V. Gulyaev, “Electroacoustic surface waves in silods,” Sov. Phys. JETP Lett. 9, 63 (1969).
63. Y. Ohta, K. Nakamura, and H. Shimizu, “Piezoelectric surface shear waves,” in Proc. Ultrason. Committee Inst. Electron. Commun. Eng. Japan (1969).
64. C.-C. Tseng, “Piezoelectric surface waves in cubic and orthorhombic crystals,” Appl. Phys. Lett. 15, 253 (1970).
65. G. Koerber and R. F. Vogel, “Generalized Bleustein modes,” IEEE Trans. Sonics and Ultrason. SU-19, 3 (1972).
66. K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, Inc., New York, 1975).
67. R. D. Mindlin, “Thickness-shear and flexural vibrations of crystal plate,” J. Appl. Phys. 22, 316 (1951).
68. R. D. Mindlin, “High frequency vibrations of crystal plates” Quart. Appl. Math. 19, 51 (1961).
69. R. D. Mindlin, “High frequency vibrations of piezoelectric crystal plates,” Int. J. Solid Struct. 8, 895 (1972).
70. A. L. Cauchy, Exercises de Mathématiques (Chez De Bure Frères, Paris, 1826- 1830), Vol. 4, p. 1.
71. Z. Liu, C. T. Chan, and P. Sheng, “Three-component elastic wave band-gap material,” Phys. Rev. B 65, 165116 (2002).
72. C. Goffaux and J. Sanchez-Dehesa, “Evidence of Fano-like interference phenomena in locally resonant materials,” Phys. Rev. Lett. 88, 225502 (2002).
73. P. M. Morse, Vibration and Sound (American Institute of Physics, United States, 1986).
74. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, New Jersey, 1995).
75. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic Publisher, Massachusetts, 2001).
76. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, New York, 2001).
77. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294 (1997).
78. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
79. A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, “Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser,” Phys. Rev. Lett. 96, 083905 (2006).
80. M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett. 96, 123903 (2006).
81. D. G. Gusev, I. V. Soboleva, M. G. Martemyanov, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68, 233303 (2003).
82. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
83. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals” Nature 430, 654 (2004).
84. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358 (2003).
85. E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, “Demonstration of a 17-GHz, hight-gradient accelerator with a photonic-band- gap structure,” Phys. Rev. Lett. 95, 074801 (2006).
86. D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 何福田 (民93b)。學校特色與自我行銷。研習資訊,6(21),1-6。
2. 吳宗立 (民85) 。 國中學校行政人員工作壓力與因應策略之研究。國教學報,8,99-131。
3. 林文律(民88)。從校長必備能力看校長培育。教育資料與研究,28,6-13。
4. 林文律(民89)。學校行政:理想與實際。學校行政雙月刊,6:24-37。台北:中華民
5. 林明地(民85)。學校與社區關係—從家長參與的理念談起。教育研究,51,30-40。
6. 林明地(民87)。家長參與學校教育的研究與實際:對教育改革的啟示。教育研究資訊,7(2),61-79。
7. 林明地(民89a)。校長專業發展課程設計理念與教學方法之探討。教育資料與研究,37,10-20。
8. 林明地(民89b)。校長教學領導實際:一所國小的參與觀察。教育研究集刊,44:94 。
9. 林海清(民89)。從校長培育與專業發展看校長證照制度。教育資料與研究,37,21-25。
10. 范麗娟(民83)。深度訪談簡介。戶外遊憩研究,7(2), 25-36。
11. 陳翠娟(民92)。國民小學校長專業發展實施模式規劃之研究。國立台中師範學院進修暨推廣部國民教育研究所碩士論文,未出版,台中。
12. 郭木山(民92)。談教育變革中校長教學領導的角色與做法。教育資料與研究,
13. 郭明德(民91)。現階段教育改革中,校長角色的定位與因應策略。研習資訊,19(4),62-75。
14. 陸洛(民86)。工作壓力之歷程:理論與研究的對話。中華心理衛生學刊,10,19-51。
15. 曾俊凱(民89)。從國民教育法第九條修正案談校長新角色。北縣教育,36:60-65。