|
REFERENCES 1. L. Rayleigh, “On wave propagating along the plane surface of an elastic solid,” Proc. Lond. Math. Soc. 17, 4 (1985). 2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987). 3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2169 (1987). 4. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composite,” Phys. Rev. Lett. 71, 2022 (1993). 5. M. M. Sigalas and E. N. Economou, “Elastic and acoustic band structure,” J. Sound Vib. 158, 377 (1992). 6. M. M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” J. Solid State Commun. 86, 141 (1993). 7. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composite,” Phys. Rev. B. 49, 2313 (1994). 8. D. Bria and B. Djafari-Rouhani, “Omnidirectional elastic band gap in finite lamellar structures,” Phys. Rev. E. 66, 056609 (2002). 9. M. Kafesaki, M. M. Sigalas, and N. Garcia, “Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials,” Phys. Rev. Lett. 85, 4044 (2000). 10. Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, “Tunable filtering and demultiplexing in phononic crystals with hollow cylinders,” Phys. Rev. E. 69, 046608 (2004). 11. F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, and J. Sanchez-Dehesa, “Refractive acoustic devices for airborne sound,” Phys. Rev. Lett. 88, 023902 (2002). 12. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004). 13. L. Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philsosphical Magazine 24, 145 (1887). 14. G. Floquet, “Sur les equations differentielles linearies a coefficients periodi- ques,” Ann. Ecole Norm. Sup. 12, 47 (1883). 15. F. Bloch, “Uber die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555 (1928). 16. Y. Tanaka and S. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. E. 58, 7958 (1998). 17. X. Zhang, T. Jackson, E. Lafond, P. Deymier, and J. O. Vasseur, “Evidence of surface acoustic wave band gaps in the phononic crystal created on thin plates,” Appl. Phys. Lett. 88, 041911 (2006). 18. M. Kafesaki and E. N. Economou, “Multiple-scattering theory for three- dimensional periodic acoustic composites,” Phys. Rev. B. 60, 11993 (1999). 19. J. Mei, Z. Liu, J. Shi, and D. Tian, “Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band- structure calculations,” Phys. Rev. B 67, 245107 (2003). 20. D. Garcia-Pablos, M. Sigalas, F. R. Montero de Espinosa, M. Torres, M. Kafesaki, and N. Garcia, “Theory and experiments on elastic band gaps,” Phys. Rev. Lett. 84, 4349 (2000). 21. P.-F. Hsieh, T.-T. Wu and J.-H. Sun, “Three-dimensional phononic band gap calculations using the FDTD Method and a PC Cluster system,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 53, 148 (2006). 22. C. Goffaux and J. Sanchez-Dehesa, “Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials,” Phys. Rev. B. 67, 144301 (2003). 23. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B. 62, 278 (2000). 24. R. Sainidou, N. Stefanou, and A. Modinos “Green’s function formulism for phononic crystals,” Phys. Rev. B. 69, 064301 (2004). 25. Z. Hou, X. Fu, and Y. Liu, “Calculational method to study the transmission properties of phononic crystals,” Phys. Rev. B. 70, 014304 (2004). 26. G. Wang, J. Wen, Y. Liu, and X. Wen, “Lumped-mass method for the study of band structure in two-dimensional phononic crystals,” Phys. Rev. B 69, 184302 (2004). 27. F. R. Montero de Espinoza, E. Jimenez, and M. Torres, “Ultrasonic band gap in a periodic two-dimensional composite,” Phys. Rev. Lett. 80, 1208 (1998). 28. M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and N. Garcia, “Sonic band gaps in finite elastic media: Surface states and localization phenomena in linear and and point defects,” Phys. Rev. Lett. 82, 3054 (1999). 29. R. E. Vines, J. P. Wolfe, and A. V. Every, “Scanning phononic lattices with ultrasound,” Phys. Rev. B 60, 11871 (1999). 30. T. Gorishnyy, C. K. Ullal, M. Maldvan, G. Fytas, and E. L. Thomas, “Hyper- sonic phononic crystals,” Phys. Rev. Lett. 94, 115501 (2005). 31. T.-T. Wu, Z.-G. Huang, and S.-Y. Liu, “Surface acoustic wave band gaps in micro-machined air/silicon phononic structures—theoretical calculation and experiment,” Zeitschrift für Kristallographie, 220, 841 (2005). 32. T.-T. Wu, L.-C. Wu, and Z.-G. Huang, “Frequency band-gap measurment of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers,” J. App. Phys. 97, 094916 (2005). 33. S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude, “Evidence for complete surface wave band gap in a piezoelectric phononic crystal,” Phys. Rev. E 73, 065601 (2006) 34. Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B 62, 2446 (2000). 35. Y. Tanaka, Y. Tomoyasu, and S. Tamura, “Band structure of acoustic waves in phononic lattice: Two-dimensional composites with large acoustic mismatch,” Phys. Rev. B 62, 7387 (2000). 36. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials” Science 289, 1734 (2000). 37. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, “Experimental and theoretical evidence for existence of absolute acoustic band gaps in two-dimensional solid phononic crystals,” Phys. Rev. Lett. 86, 3012 (2001). 38. M. Wilm, S. Ballandras, V. Laude, and T. Pastureaud, “A full 3D plane-wave- expansion model for 1-3 piezoelectric composite structures,” J. Acoust. Soc. Am. 112, 943 (2002). 39. R. Sainidou, N. Stefanou, and A. Modinos, “Formation of absolute frequency gaps in three-dimensional solid phononic crystals,” Phys. Rev. B 66, 212301 (2002). 40. H. Zhao, Y. Liu, G. Wang, J. Wen, D. Yu, X. Han, and X. Wen, “Resonance modes and gap formation in a two-dimensional solid phononic crystal,” Phys. Rev. B 72, 012301 (2005). 41. L. Sanchis, A. Hakansson, F. Cervera, and J. Sánchez-Dehesa “Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air,” Phys. Rev. B 67, 035422 (2003). 42. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 314301 (2003). 43. G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-dimensional locally resonant phononic crystals with binary structures,” Phys. Rev. Lett. 93, 154302 (2004). 44. J.-H. Sun and T.-T. Wu, “Analyses of mode coupling in joined parallel phononic crystal waveguide,” Phys. Rev. B 71, 174303 (2005). 45. T.-T. Wu, Z.-G. Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B 69, 094301 (2004). 46. T.-T. Wu and J.-C. Hsu, “Band gaps and electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric crystal,” Phys. Rev. B 71, 064303 (2005). 47. V. Laude, M. Wilm, S. Benchabane, and A. Khelif, “Full band gap for surface waves in piezoelectric phononic crystal,” Phys. Rev. E 71, 036607 (2005). 48. J.-C. Hsu and T.-T. Wu, “Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 53, 1169 (2006). 49. J.-C. Hsu and T.-T. Wu, “Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates,” Phys. Rev. B 74, 144303 (2006). 50. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibd, and V. Laude, “Complete band gaps in two-dimensional phononic crystal slabs,” Phys. Rev. E 74, 046610 (2006). 51. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learing, Singarpore, 1976). 52. L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications, Inc., New York, 2003). 53. D. Royer and E. Dieulesaint, Elastic Wave in Solid I: Free and Guided Propagation (Springer-Verlag, Berlin, 2000). 54. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger Publishing Company, Florida, 1990). 55. Y. Tanaka and S. Tamura, “Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattice consisting of aluminum and a polymer,” Phys. Rev. B 60, 13294 (1999). 56. J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, and P. A. Deymier, “Acoustic band gaps in fiber composite materials of boron mitride structure,” J. Phys: Condens. Matter 9, 7327 (1999). 57. C. Li, X. Han, and X. Wen, “Band-structure results for elastic waves interpreted with multiple-scattering theory,” Phys. Rev. B 74, 153101 (2006). 58. C. Goffaux and J. P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Phys. Rev. B 64, 075118 (2001). 59. Z. Hou, X. Fu, and Y. Liu, “Singularity of Bloch theorem in the fluid/solid phononic crystal,” Phys. Rev. B 73, 024304 (2006). 60. K. A. Ingebrigtsen, “Surface waves in piezoelectrics,” J. Appl. Phys. 40, 2681 (1969). 61. J. L. Bleustein, “A new surface wave in piezoelectric materials,” Appl. Phys. Lett. 13, 412 (1968). 62. Y. V. Gulyaev, “Electroacoustic surface waves in silods,” Sov. Phys. JETP Lett. 9, 63 (1969). 63. Y. Ohta, K. Nakamura, and H. Shimizu, “Piezoelectric surface shear waves,” in Proc. Ultrason. Committee Inst. Electron. Commun. Eng. Japan (1969). 64. C.-C. Tseng, “Piezoelectric surface waves in cubic and orthorhombic crystals,” Appl. Phys. Lett. 15, 253 (1970). 65. G. Koerber and R. F. Vogel, “Generalized Bleustein modes,” IEEE Trans. Sonics and Ultrason. SU-19, 3 (1972). 66. K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, Inc., New York, 1975). 67. R. D. Mindlin, “Thickness-shear and flexural vibrations of crystal plate,” J. Appl. Phys. 22, 316 (1951). 68. R. D. Mindlin, “High frequency vibrations of crystal plates” Quart. Appl. Math. 19, 51 (1961). 69. R. D. Mindlin, “High frequency vibrations of piezoelectric crystal plates,” Int. J. Solid Struct. 8, 895 (1972). 70. A. L. Cauchy, Exercises de Mathématiques (Chez De Bure Frères, Paris, 1826- 1830), Vol. 4, p. 1. 71. Z. Liu, C. T. Chan, and P. Sheng, “Three-component elastic wave band-gap material,” Phys. Rev. B 65, 165116 (2002). 72. C. Goffaux and J. Sanchez-Dehesa, “Evidence of Fano-like interference phenomena in locally resonant materials,” Phys. Rev. Lett. 88, 225502 (2002). 73. P. M. Morse, Vibration and Sound (American Institute of Physics, United States, 1986). 74. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, New Jersey, 1995). 75. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic Publisher, Massachusetts, 2001). 76. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, New York, 2001). 77. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294 (1997). 78. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006). 79. A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, “Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser,” Phys. Rev. Lett. 96, 083905 (2006). 80. M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett. 96, 123903 (2006). 81. D. G. Gusev, I. V. Soboleva, M. G. Martemyanov, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68, 233303 (2003). 82. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005). 83. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals” Nature 430, 654 (2004). 84. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358 (2003). 85. E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, “Demonstration of a 17-GHz, hight-gradient accelerator with a photonic-band- gap structure,” Phys. Rev. Lett. 95, 074801 (2006). 86. D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
|