跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/14 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳銘昌
研究生(外文):James, Ming Chang, Chen
論文名稱:旅波式介電幫浦之實驗研究
論文名稱(外文):Experimental Study of Traveling Wave Dielectrophoretic Pump
指導教授:李雨李雨引用關係
指導教授(外文):U. Lei
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:69
中文關鍵詞:旅波式介電泳幫浦紅血球實驗
外文關鍵詞:Traveling wave dielectrophoresispumpred blood cellexperiment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以實驗方式探討旅波介電泳幫浦。該幫浦為一可適用於微流道中輸送兩相懸浮
流之幫浦,比如說用於輸送我們的血。本幫浦為一直型微流道,其截面為矩形,同時在壁面
鍍有電極。當將一交流且同時擁有相位差之訊號施以電極上,傳統介電泳及旅波式介電泳將
會驅使懸浮粒子或是細胞運動。當旅波介電力主導懸浮粒子運動時,粒子單方向移動並拖曳
介質前行,因此兩相懸浮流體即被傳送。我們使用微機電製程技術製造出該幫浦,並驗證該
幫浦的確適用於輸送人血上。同時,我們探討該幫浦在不同參數下之性能,其中包含了電
壓,頻率,鄰近電極之相位差,所使用之電極數,懸浮粒子之濃度,不同之懸浮粒子,輔助
電極之使用,以及不同之訊號源(訊號產生器及IC)。我們使用以上參數可得到以下結論:
以四相位(相位差90度),多組電極,較大的粒子,同時使用輔助電極,將會使得粒子以較
快的速度移動。以我們的實驗為例,人血之紅血球細胞在6伏特,10MHz,90度相位差以及
擁有輔助電極及24根驅動電極作用之下,以每秒28.4μm之速度移動。該幫浦同時亦可以以IC
驅動,這證明了將該幫浦微小化之可能性。我們可將此幫浦應用於生醫領域。
This thesis studies experimentally the traveling wave dielectrophoretic pump, which is a
micropump suitable for delivering two-phase suspension medium, such as our blood. The pump is
essentially a straight microchannel with square cross section with array of electrodes built on one of
its walls. Ac voltage is applied to the electrodes with a certain phase shift on neighboring electrodes.
Both conventional and traveling wave dielectrophorsis are generated and drive the suspended
particles (or cells) in motion. When the traveling wave dielectrophoretic force dominates the
particle motion, the particles move along the direction of increasing phase if the imaginary part of
the Clausius factor is positive (or vice versa), drag their surrounding fluid, and thus the whole
medium is transported. We first manufactured the pump via MEMS techniques and demonstrate the
feasibility of the above idea for pumping using human blood. Then we studied the performance of
the pump for different parameters, including applied electric voltage, electric frequency, phase shift
for neighboring electrodes, number of electrodes, concentration of suspended particles (by varying
blood/saline ratio), different particles (blood cells of wister and human), without and with assistant
electrodes before the normal electrode array, and different driving sources (functional generator or
small IC chip). It is found that we have larger cell velocity for larger voltage, more electrodes, 90o
phase shift (in comparing with 120o), larger cells, and with assistant electrodes. Typical cell
velocity of human blood reaches 28.4 μm/s for 6 volts, 10 MHz, 90 phase shift and 24 electrodes
with assistant electrodes. The pump also works when it is integrated with a IC chip, which shows
the possibilities of building a small portable device. The result may find application in biomedical
area.
Acknowledgement----------------------------------------------------------------------------III
Chinese Abstract------------------------------------------------------------------------------IV
English Abstract------------------------------------------------------------------------------V
List of Figures-------------------------------------------------------------------------------VI
List of Tables--------------------------------------------------------------------------------IX
Chapter 1 Introduction------------------------------------------------------------------1
1.1 Research background and motivation---------------------------------------1
1.2 Traveling wave dielectrophoretic pumping mechanism---------------------2
1.3 Literature review-----------------------------------------------------------2
Chapter 2 Some Theoretical Background------------------------------------------6
2.1 General Dielectrophoresis--------------------------------------------------6
2.2 Viscous drag on a spherical particle----------------------------------------9
2.3 The Clausius-Mossotti factor of red blood cells----------------------------9
Chapter 3 Experiments----------------------------------------------------------------11
3.1 Materials ------------------------------------------------------------------11
3.2 Fabrication----------------------------------------------------------------12
3.2.1 Electrode Array ----------------------------------------------------12
3.2.2 Micro-channel ------------------------------------------------------13
3.2.3 Bonding the electrode array to the channel-------------------------14
3.2.4 The detailed size of TWDEP pump--------------------------------15
3.3 Experimental Setup---------------------------------------------------------15
Chapter 4 Results and Discussion-----------------------------------------------------16
II
4.1 Results without assistant electrodes-------------------------------------------18
4.1.1 Different numbers of electrodes--------------------------------------18
4.1.2 Different phase shift--------------------------------------------------19
4.1.3 Different applied voltages-------------------------------------------20
4.1.4 Different volume fraction--------------------------------------------21
4.1.5 Different electric frequencies-----------------------------------------22
4.2 Results with assistant electrodes----------------------------------------------23
4.2.1 Design of assistant electrode-----------------------------------------23
4.3 TWDEP pump driven by IC---------------------------------------------------23
4.4 System Integration------------------------------------------------------------24
4.5 Results for different electrodes width and spacing----------------------------26
Chapter 5 Conclusion and Future Work-----------------------------------------------27
References---------------------------------------------------------------------------------------28
Appendix A------------------------------------------------------------------------------------68
Appendix B------------------------------------------------------------------------------------69
[1] Batchelor, G. K., Introduction to Fluid Dynamics, Cambridge Press, 1967
[2] Bordi, E., C. Carmetti, R. Misai, R. De Persio, and G. Zimatore, Eur. Biophys. J., 26, 215-225,
1997
[3] Eddington, D.T., W.C.Crone, and D.J.Beebe, “Development of Process Protocols to Fine tune
Plydimethylsiloxane Material Properties,” Proceeding of Micro Total Analysis System, 1089-
1092, 2003
[4] Fuhr, G., T. Schnelle, and B. Wagner, “Traveling wave-driven microfabricated
electrohydrodynamic pumps for liquids”, J. Micromech. Microeng., 4, 217-226, 1994
[5] Hagedorn, Rolf, G. Fuhr, T. Muller, and J. Gimsa, “Traveling-wave dielectrophoresis of
microparticles”, Electrophoresis, 13, 49-54, 1992
[6] Huang, Y., X.B. Wang, J.A. Tames, and R. Pethig, “Electrickinetic behavious of colloidal
particles in traveling electric fields: studies using yeast cells”, J. Phy. D: Appl. Phys., 26, 1526-
1535, 1993
[7] Hughes, M.P., Nanoelectromechanics in Engineering and Biology, CRC Press, 2003
[8] Jones, T. B., Electromechanics of Particles, Cambridge Univ. Press, 1995
30
[9] Masuda, S., M. Washizu, and M. Iwadare, “Separation of Small Particles Suspended in Liquid
by nouniform Traveling Field”, IEEE Transactions on Industry IA-23, 373-380, 1987
[10] Masuda, S., and M. Washizu, “Movement of Blood Cells in Liquid by Nonuniform Traveling
Field”, IEEE Transactions on Industry, 24, 217-222, 1988
[11] Pohl, H.A., “Dielectrophoresis”, Cambridge University Press, 1978
[12] Wang, X.B., Y. Huang, R. Holzel, J.P.H. Burt, and R. Pethig, “”, J. Phy. D: Appl. Phys., 26,
312-322, 1993
[13] Wang, X.B., Y. Huang, F.F. Becker, and P.R.C. Gascoyne, “A unified theory dielectrophoresis
and traveling wave dielectrophoresis”, Journal of Physics D: Applied physics, 27, 1571-1574,
1994
[14] Talary, M.S., J.P.H. Birt, J.A. Tame, and R. Pethig, “Electromanipulation and separation of
cells using traveling electric fields”, J. Phy. D: Appl. Phys., 29, 2198-2203, 2003
[15] 莊達仁, “VLSI 製造技術,” 高立出版 2001
[16] Hsieh, H.Y. (謝鴻彥), “以旅波介電泳分離全血中血球模擬” Master thesis, Institute of
Applied Mechanics, National Taiwan University, 2003
31
[17] Lo, Y.J. (羅英傑), “Dielectrophoresis on Plasma/RBC Seperation and RBC Manipulation”,
Master thesis, Institute of Applied Mechanics, National Taiwan University, 2004
[18] Sun, C.S. (孫志璿), “以旅波介電泳驅動的二相懸浮槽流的數值研究” Master thesis,
Institute of Applied Mechanics, National Taiwan University, 2004
[19] Lin, Y.C. (林永錡), “微流道中以旅波介電泳方式驅動的二相懸浮流” Master thesis,
Institute of Applied Mechanics, National Taiwan University, 2005
[20] Yeh, Y.M. (葉祐銘), “旅波介電泳幫浦的設計分析” Master thesis, Institute of Applied
Mechanics, National Taiwan University, 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top