跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱元
研究生(外文):Yu-Yuan Chen
論文名稱:零電壓切換中央驅動雙輸出壓電變壓器用換流器的理論與實驗
論文名稱(外文):Theory and Experiment of ZVS on Center-Driven Dual-Output Piezoelectric Transformer Based Inverters
指導教授:葉超雄葉超雄引用關係李世光李世光引用關係
指導教授(外文):Chau-Shioung YehChih-Kung Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:127
中文關鍵詞:中央驅動雙輸出壓電變壓器零電壓切換換流器液晶顯示器冷陰極燈管
外文關鍵詞:center-drivendual-outputpiezoelectric transformerZVSinverterLCDCCFL
相關次數:
  • 被引用被引用:3
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文針對液晶顯示器背光模組發光源-冷陰極燈管(Cold Cathode Fluorescent Lamp, CCFL),提出一種單層中央驅動雙輸出壓電變壓器,並以壓電變壓器之基礎力學特性為本,分析中央驅動雙輸出壓電變壓器包含共振頻率、升壓比、匹配負載阻抗、最大能量傳輸效率、阻抗分析等整體特性。此種型式之壓電變壓器的應用可以有兩種方式:第一,由於兩端輸出具有對稱特性,因此兩端電極可以同時驅動兩支冷陰極燈管;第二,又因為兩端輸出為就結構上看來是同向極化的關係,使兩輸出端產生反相之輸出訊號,可以產生一較大之輸出電壓,因此也可以驅動一等效負載阻抗較大之冷陰極燈管。此外結合壓電變壓器的力學分析、等效電路分析和切換式電源供應的思路,提出了一最佳化之串聯電感於壓電變壓器前,此串聯電感與壓電變壓器之輸入靜態電容所形成的諧振槽介於壓電變壓器結構共振頻率之1倍頻∼3倍頻之間,由於此諧振槽之共振頻率並不在壓電式換流器之操作頻率上,因此可以解決過去必須使用較大電感之問題。並且利用調整開關切換的盲時間(Deadtime)之方法搭配串聯一最佳化電感,設計出零電壓切換中央驅動雙輸出壓電變壓器用換流器。最後本研究論文以單層中央驅動雙輸出壓電變壓器的設計,製作出一套完整的零電壓切換之壓電式換流器,並成功以單一變壓器驅動U型及兩支300mm、500mm、680mm冷陰極燈管且燈管電流皆控制在5mArms。綜合言之,藉由本文所得成果,在未來以單層中央驅動雙輸出壓電變壓器的優勢以取代傳統電磁式變壓器驅動液晶顯示器背光模組是可以被期待的。
The main thrust of this thesis is to develop a single layer center-driven dual-output piezoelectric transformer based inverter for lighting CCFL (cold cathode fluorescent lamp) in LCD (liquid crystal display) backlight applications. Considering the basic mechanical properties of piezoelectric transformer, center-driven dual-output piezoelectric transformer were modeled and analyzed as vibrating at the 3/2λ mode. This thesis not only built the equivalent circuit of center-driven dual-output piezoelectric transformers but also derived the equivalent relationship between the electrical component model and the corresponding mechanical properties. All important properties of center-driven dual-output piezoelectric transformer which include the input impedance, voltage gain, resonant frequency, and optimal load condition are presented in this thesis. In practical applications, two typical configurations of center-driven dual-output piezoelectric transformer were used. The first configuration is two CCFLs connect onto the two output sections of the piezoelectric transformer and shows that the two CCFLs can be lit in sequence or simultaneously. The second configuration involves connecting the two output electrode to the two ends of a single extra-long CCFL for large size LCD TV backlight, where the floating connection configuration can provide larger driving voltage because two output sections was polarized along the same directions from the geometrical view in order to light the extra long CCFL. Combining mechanical analysis and equivalent electrical circuit with the notion of switching power supply, the optimum series inductance connected in series with piezoelectric transformer for ZVS (Zero-voltage-switching) and filtering was proposed in this thesis. The resonant tank composed of series inductance and the input static capacitance of piezoelectric transformer located between the first and the third resonance frequency of the piezoelectric transformer structure, where high-order current harmonic was used for ZVS in order to greatly reduce the value needed for the series inductance. By adjusting the deadtime of power switch and putting optimum series inductance, ZVS on center-driven dual-output piezoelectric transformer based inverter was then designed in this thesis. The final experiment measured the properties of center-driven dual-output piezoelectric transformer in high power condition, In addition, the power transfer efficiency that include the switching loss and piezoelectric transformer loss within the inverter composed of half bridge driver, series optimum inductance and center-driven dual-output piezoelectric transformer was also measured. The ZVS on center-driven piezoelectric dual-output transformer based inverter was successfully completed. Moreover, by using single transformer to light a U-type and two CCFLs (300mm or 500mm or 680mm) was also successful demonstrated while controlling the lamp current at arround 5mArms. This thesis successful verified that center-driven dual-output piezoelectric transformer can be used to light CCFL. In summary, combining all advantages of the center-driven dual-output piezoelectric transformer investigated in this thesis; the center-driven dual-output piezoelectric transformer possesses the potential to replace traditional electromagnetic transformer in the future.
謝誌 I
中文摘要 II
ENGLISH ABSTRACT III
目錄 V
圖目錄 VII
表目錄 XIII
第1章 序論 1
1-1 研究背景 1
1-2 液晶顯示器背光系統介紹 6
1-3 研究動機 12
1-4 論文大綱 13
第2章 單層中央驅動雙輸出壓電變壓器之理論分析與驗證 15
2-1 壓電材料之組成律 15
2-2 壓電材料行為 19
2-3 壓電變壓器理論分析 20
2-3-1 側面電極壓電板 21
2-3-2 端面電極壓電板 26
2-4 加入損失考慮 29
2-5 單層中央驅動雙輸出壓電變壓器之理論模型 32
2-6 中央驅動雙輸出壓電變壓器機械電路之簡化 34
2-7 中央驅動雙輸出壓電變壓器第三模態特性分析 40
2-8 低功率電性參數量測與理論驗證 50
2-9 中央驅動雙輸出壓電變壓器之結構濾波特性理論推導 59
2-10 中央驅動雙輸出壓電變壓器之結構濾波特性驗證 64
第3章 結合零電壓切換之壓電式換流器設計 67
3-1 前言 67
3-2 半橋驅動電路架構 70
3-3 電路動作原理 71
3-4 零電壓切換的條件與最佳化串接電感的設計 76
3-4-1 零電壓切換的條件 76
3-4-2 最佳化串接電感的設計 77
第4章 實驗結果 80
4-1 前言 80
4-2 單層中央驅動雙輸出壓電變壓器高功率特性量測 87
4-2-1 第一模式利用雙輸出電極同時點亮兩支冷陰極燈管 87
4-2-2 第一模式高瓦數特性量測 91
4-2-3 第二模式高瓦數特性量測 94
4-3 中央驅動雙輸出壓電變壓器在零電壓切換時工作特性 98
4-3-1 第一模式 98
4-3-2 第二模式 104
4-4 單層中央驅動雙輸出壓電變壓器驅動冷陰極燈管 109
第5章 結論與未來展望 119
5-1 結論 119
5-2 未來展望 121
參考文獻 122
1.Cheng D. K., “Second Edition Field and Wave Electromagnetics,” Addison-Wesley Publishing Company, Inc., 1989
2.Rosen C. A., “Piezoelectric Transformers,” United States Patent, Patent number 2,830,274, April 1958.
3.Lee C. K., “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment,” Ph.D. Dissertation, Cornell University, Ithaca, New York, USA, 1987.
4.Lee C. K., “Piezoelectric Laminates: Theory and Experiments for Distributed Sensors and Actuators”, Intelligent Structural Systems, Kluwer Academic, Netherlands, pp. 75-167, 1992
5.Laoratanakul P., Carazo A. V., Bouchilloux P. and Uchino K., “Unipoled Disk-type Piezoelectric Transformers,” Japanese Journal of Applied Physics, Vol.41, pp.1446-1450, March 2002
6.Lin Y. C. and Ma C. C., “Experimental Measurement and Numerical Analysis on Resonant Characteristics of Piezoelectric Disks with Partial Electrode Designs,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.51,
7.Koc B., Gao Y. and Uchino K. “Design of a Circular Piezoelectric Transformer with Crescent-Shaped Input Electrodes,” Japanese Journal of Applied Physics, Vol.42, pp.509-514, 2003.
8.Priya S. “High Power Universal Piezoelectric Transformer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.53, No.1, January 2006. No.8, August 2004.
9.Hsu Y. S., Lee C. K., and Hsiao W. H. “Optimizing Piezoelectric Transformer for Maximum Power Transfer,” Smart Material and Structure, Vol. 12, pp. 373-383., June 2003
10.Flynn A. M. and Sander S. R. “Fundamental Limits on Energy Transfer and Circuit Consideration for Piezoelectric Transformers,” IEEE Transactions on Power Electronics, Vol.17, NO.1, January 2002.
11.Chou C. W., “Multi-load Piezoelectric Transformation Circuit Driver Module,” United States Patent, Patent number 6724126, April 2004.
12.Kim J. S. and Youm J. H. (Samsung Electro-Mechanics Co., Ltd.,), “Rosen type Piezoelectric Transformer with Multiple Output Electrodes and Stabilizer for Multiple Light Source Using that,” United States Patent, Patent number 6603272, August 2003.
13.Ishii K., Akimoto N., Tashirio S. and Igarashi H. “Influence of Load Resistance on Higher Harmonic Voltages Generated in a Piezoelectric Transformer,” Japanese Journal of Applied Physics, Vol.37, pp.5330-5333, September 1998.
14.Lin C. Y. “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 1997.
15.Sakurai K., Ohnishi K. and Tomikawa Y., “Presentation of a New Equivalent Circuit of a Piezoelectric Transformer under High-Power Operation,” Japanese Journal of Applied Physics, Vol.38, pp.5592-5597, September 1999.
16.http://www.zippy.com.tw/backend/download/download/ceramic/DM/greenpower.pdf , Green Power Solution , ZIPPY Technology Corporation
17.梁適安,交換式電源供給器之理論於實務設計,全華科技圖書股份有限公司,2004年10月
18.Marian K. Kazimierczuk and Dariusz Czarkowski, “Resonant Power converter,” John Wiley & Sons, Inc., 1995
19.Huang Y. T., Hsiao W. H., Hsu Y. S., and Lee C. K., “High-power Backlight Inverter for LCD-TV using Piezoelectric Transformers,” Proceedings of Fifteenth International Conference on Adaptive Structures and Technologies 2005, October 2005.
20.Yoshiaki F., Kumasaka K., Katsuno M., Sato H. and Ino Y., “Piezoelectric Transformer for Cold Cathode Fluorescent Lamp Inverter,” Japanese Journal of Applied Physics, Vol.36, pp.3050-3052, May 1997.
21.Baker E. M., Huang W., Chen D. Y. and Lee F. C. “Radial Mode Piezoelectric Transformer Design for Fluorescent Lamp Ballast Application,” IEEE Transactions on Power Electronics, Vol.20, NO.5, September 2005.
22.Yoo J., Yoon K., Hwang S., Suh S., Kim J. and Yoo C. “Electrical Characteristics of High Power Piezoelectric Transformer for 28W Fluorescent Lamp,” Sensors and Actuators A, PP.132-137, 2001
23.Hsieh D., “DisplaySearch 2006 TFT LCD and Component Market Trends”, DisplaySearch Greater China, Taiwan Flat Panel Display Materials and Device Association, May 5, 2006
24.郭宗枋,http://micro-bridge.blog.dianyuan.com/u/42/1149569918.pdf,LCD結構解析與實體拆解,國立成功大學光電所
25.簡志�琚A側發光型散射式背光模組之分析,國立臺灣大學資電學院光電工程學研究所碩士論文,2001年1月。
26.鍾慶宇,CCFL產業展望,Fubon Securities Investment Monthly, pp20-45, Sep. 15, 2005
27.Katz H. W., “Solid State Magnetic and Dielectric Device, ”Wiley, New York, pp.94-126,1959
28.Wada Y. and Hayakawa R., “Piezoelectricity and Pyroelectricity of Polymers,” Jpn. J. Appl. Phys, Vol.15, No. 11, pp. 2041-2057, November 1976
29.ANSI/IEEE Standard 176, Piezoelectricity, The Institute of Electrical and Electronics Engineers, Inc. September 1987.
30.Rosen C. A., “Ceramic Transformers and Filters,” Proc. Electronic Comp. Symp., pp.205-211, 1956.
31.Kawashima S., “Third Order Longitudinal Mode Piezoelectric Ceramic Transformer and its Application; to High-Voltage Power Inverter,” IEEE Ultrasonic Symposium, pp.525, 1994.
32.蕭文欣,創新壓電變壓器/換能器之理論與實驗:擬模態致動器及波傳設計理念之應用,國立臺灣大學應用力學研究所碩士論文,2000年7月。
33.吳文中,高功率力電轉換系統之建模與驗證,國立臺灣大學應用力學研究所博士論文,2003年7月。
34.許聿翔,壓電系統其力電場互動之理論與實驗-壓電變壓器、柔性結構控制及自由落體感應子之創新突破基礎,國立臺灣大學應用力學研究所碩士論文。2002年7月。
35.Mason W. P., 1980. “An Electromechanical Representation of a Piezoelectric Crystal Used as a Transducer,” Bell Systems Technical Journal, pp. 178.
36.Marian K. Kazimierczuk and Dariusz Czarkowski, “Resonant Power converter,” John Wiley & Sons, Inc., 1995
37.Agilent Technologies Japen, Lts, January 2001, “Agilent 4294A Precision Impedance Analyer Operation Manual,” Component Test PGU-Kobe 1-3-2,Murotani, Nishi-ku, Kobe-shi, Hyogo,651-2241 Japen
38.Pressman A. I., “Switching Power supply Design,” The McGraw-Hill Companies, Inc., 1999
39.Lee F. C., “High-frequency quasi-resonant converter technologies,” Proc. IEEE, vol. 76, pp. 377-390, Apr. 1988.
40.Kakedhashi H., Hidaka T., Ninomiya T., Shoyama M., H. Ogasawara and Ohta Y., “Electronic Ballast Using Piezoelectric Transformers for Fluorescent Lamps,” Proceedings of IEEE PESC’98 record, pp. 29-35, 1998.
41.Lin R. L. “Piezoelectric Transformer Characterization and Application of Electronic Ballast,” Ph. D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute, 2001.
42.Baker E. M. “Design of Radial Mode Piezoelectric Transformer for Lamp Ballast Applications,” Master thesis, Department of Electrical Engineering, Virginia Polytechnic Institute, 2002.
43.Huang Y. T., Hsiao W. H., Hsu Y. S., and Lee C. K., “High-power Backlight Inverter for LCD-TV using Piezoelectric Transformers,” Proceedings of Fifteenth International Conference on Adaptive Structures and Technologies 2005, October 2005.
44.Lin R. L., Lee F. C., Baker E. M. and Chen D. Y., “Inductor-less Piezoelectric Transformer Electronic Ballast for Linear Fluorescent Lamp,” Applied Power Electronics Conference and Exposition, 2001.
45.Bronstein S. and Yaakov S. B., “Design Considerations for Achieving ZVS in a Half Bridge Inverter that Drives a Piezoelectric Transformer with No Series Inductor, ” IEEE Power Electronics Specialists Conf., pp. 585-590, 2002
46.莊于田,液晶顯示器背光源之多相驅動研製,國立中正大學電機工程研究所碩士論文,2004年7月。
47.林伯臣,相位控制之壓電式背光反流器,國立臺灣大學電子工程學研究所碩士論文,2005年7月。
48.Yamaguchi S. and Furuhashi N. “Method and circuit for Driving Piezoelectric Transformer,” United States Patent, Patent number 6268681, July 2001.
49.http://www.ieechina.com/Upload/Tech/200511021359190515.pdf., CCFL Characteristics, Maxim Integrated Products
50.http://www.wellypower.com.tw , Lifetime of CCFL, Wellypower Optronics CO. LTD.
51.黃耀田,以模態壓電變壓器研製液晶顯示器背光模組用換流器的理論與驗證,國立臺灣大學應用力學研究所博士論文,2006年10月。
52.Agilent Technologies Japan, Ltd., March 2000, “Agilent 4395A Network/Spectrum/ Impedance Analyzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
53.http://www.irf.com/product-info/datasheets/data/ir2184.pdf, Half-Bridge Driver, International Rectifier
54.http://www.ortodoxism.ro/datasheets/irf/irf840.pdf, Power MOSFET, International Rectifier
55.http://www.dianyuan.com/bbs/u/37/1136887030.pdf, Intelligent CCFL Inverter Controller OZ960, O2 Micro Electronics Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊