跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鐘晟原
研究生(外文):Sheng-Yuan Chung
論文名稱:應用液晶之微可變電容研究
論文名稱(外文):Study on Liquid-Crystal Based Micromachined Tunable Capacitors
指導教授:張培仁
指導教授(外文):Pei-Zen Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:73
中文關鍵詞:可變電容能量擷取高分子分散型液晶
外文關鍵詞:tunable capacitorpower harvestingpolymer-dispersed liquid crystal
相關次數:
  • 被引用被引用:1
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文製作出一高分子分散型液晶可變電容,並且理論上驗證可以將此可變電容用來提高可調式能量擷取系統的能量擷取效率。此可調式能量擷取系統利用一壓電懸臂樑將外界的振動機械能轉換成電能儲存。為了改善能量擷取的效率,本文中所發展的高分子分散型液晶可變電容配合適當的電路,可以用來即時調變所使用的壓電懸臂樑共振頻,使得此壓電懸臂樑的共振頻可以即時的和外界的隨機振動匹配,如此可以得到最大的能量輸出。高分子分散型液晶可變電容的製程以及量測結果將在文中詳述。在75kHz的量測頻率下可以得到高達117.5%的電容調變量,此外在施加12V的偏壓情況下,仍然可以得到55%的電容調變量。另外此高分子分散型液晶可變電容的介電常數特性和光學特性也會在文中詳細討論。從量測的結果我們對此可變電容建立一個集總元件等效電路,並且藉由理論模擬驗證其可以改善可調式能量擷取系統的能量擷取效率。
This thesis presents a tunable power harvesting device and explains how a tunable capacitor based on polymer-dispersed liquid crystal (PDLC) can be used to optimize the power harvesting efficiency. The power harvesting device utilizes piezoelectric micro-cantilever excited by environmental random vibration to transfer mechanical energy to electric power. For improving the power harvesting efficiency, we have developed a PDLC tunable capacitor to adjust the resonance frequency of the piezoelectric micro-cantilever beam to match the frequency of environmental random vibration in real time. Fabrication process and measurement results of the PDLC tunable capacitor are detailed. Large tuning ratio up to 117.5% of the PDLC tunable capacitor is measured at 75kHz signal frequency. At 12V driving voltage, tuning ratio as 55% can be achieved. The dielectric and optical properties of the fabricated tunable PDLC capacitor have been examined thoroughly. Based on the experimental results, we have also developed an equivalent lumped-element model of the PDLC tunable capacitor. The simulation results show that the impedance of the developed model agrees well with that of the fabricated tunable capacitor. This model can be incorporated into the equivalent circuit of the integrated power harvesting system for efficiency optimization in the future.
TABLE OF CONTENTS
Acknowledgments I
摘要 III
ABSTRACT IV
TABLE OF CONTENTS V
LIST OF FIGURES VII
Chapter 1 Introduction 1
1-1 Background 1
1-2 Piezoelectric cantilever beam 2
Chapter 2 Tunable Power Harvesting System 4
2-1 Equivalent circuit of piezoelectric cantilever beam 4
2-2 Simulation of tunable power harvesting system 5
Chapter 3 PDLC Tunable Capacitor 7
3-1 Tuning mechanism of PDLC tunable capacitor 7
3-2 Fabrication of PDLC tunable capacitor 8
Chapter 4 Device Characterization 10
4-1 Electro-optical characterization of PDLC tunable capacitor 10
4-2 Physical characterization of PDLC tunable capacitor 11
Chapter 5 Lumped-Element Model 13
5-1 Impedance simulation of PDLC tunable capacitor 13
5-2 Simulation verification of tunable power harvesting system 13
Chapter 6 Conclusion 15
Reference 32
Appendix A Polymer-dispersed liquid crystal (PDLC) 39
Appendix B Literature survey of tunable capacitor 43
Appendix C Nano-sized PDLC droplets 53
[1]W. J. Wu, B. S. Lee, and Y. Y. Chen, “Tunable resonant frequency power harvesting device,” Smart Structures and Materials, Proceedings of the SPIE, Vol. 6169, pp. 55-62, 2006.
[2]G. K. Ottman, “Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply,” IEEE Transaction on Power Electronics, Vol. 17, pp. 669-676, 2002
[3]N. G. Elvin, A. A. Elvin and M. Spector, “A self-powered mechanical strain energy sensor,” Smart Materials and Structures, Vol. 10, pp. 293-299, 2001
[4]J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim, “Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation,” Smart Materials and Structures, Vol. 16, pp. 447-454, 2007
[5]M. J. Guan and W. H. Liao, “On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages,” Smart Materials and Structures, Vol. 16, pp. 498-505, 2007
[6]R. Fletcher, “Force transduction material for human-technology interface,” IBM Systems Journal, Vol. 35, pp. 630-638, 1996
[7]T. Starner, “Human-powered wearable computing,” IBM Systems Journal, Vol. 35, pp. 35267-35294, 1996
[8]A. Bade, D. Guyomar, E. Lefeuvre and C. Richard, “Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion,” Journal of Intelligent Material Systems and Structures, Vol. 16, pp. 889-901, 2005
[9]N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro, Vol. 21, pp. 30-42, 2001
[10]J. Chen, J. Zou, C. Liu, J. E. Schutt-Aine and S. M. Schutt-Aine, “Design and modeling of a micromachined high-Q tunable capacitor with large tuning range and a vertical planar spiral inductor,” IEEE Transaction on Electron Devices, Vol. 50, pp. 730-739, 2003
[11]A. Decand and K. Suyama, “Micromachined electro-mechanically tunable capacitors and their applications to RF IC’s,” IEEE Transaction on Microwave Theory and Techniques, Vol. 46, pp. 2587-96, 1998
[12]C. L. Goldsmith, A. Malczewski, Z. J. Yao, S. Chen, J. Ehmke and D. H. Hinzel, “RF MEMS variable capacitors for tunable filters,” International Journal RF Microwave, Vol. 9, pp. 362-74, 1999
[13]J. W. Doane, N. A. Vaz, B. G. Wu and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Applied Physics Letters, Vol. 48, pp. 269-271, 1985
[14]C. A. Chang, C. C. Cheng and J. A. Yeh, “Analysis and modeling of liquid-crystal tunable capacitor,” IEEE Transaction Electron Devices, Vol. 53, pp. 1675-1682, 2006
[15]W. Korner, H. Scheller, A. Beck and J. Fricke, “PDLC films for control of light transmission,” Journal of Physics D, Vol. 27, pp. 2145-2151, 1994
[16]J. J. Wu and C. M. Wang, “Electro-optical properties of aligned polymer dispersed liquid crystal films,” Physics Letters A, Vol. 230, pp. 149-154, 1997
[17]Y. Utsumi, T. Kamei, K. Saito and H. Moritake, “Increasing the speed of microstrip-line-type polymer-dispersed liquid-crystal loaded variable phase shifter,” IEEE Transaction on Microwave Theory and Techniques, Vol. 53, pp. 3345-3353, 2005
[18]T. Kamei, Y. Utsumi, H. Moritake, K. Toda and H. Suzuki, “Measurements of the dielectric properties of nematic liquid crystal at 10 kHz to 40 GHz and application to a variable delay line,” Electronics Communications in Japan. Vol. 86, pp. 49-60, 2003
[19]Y. Utsumi, T. Kamei and R. Naito, “Measurement of effective dielectric permittivity of microstrip microstripline-type liquid crystal devices using inductive coupled ring resonator,” IEEE Electron Devices Letters, Vol. 39, pp. 849-850, 2003
[20]R. Nozaki, T. K. Bose and S. Yagihara, “Dielectric relaxation of a reentrant nematic-liquid-crystal by time-domain reflectometry,” Physics Review A, Vol. 46, pp. 7733-7737,1992
[21]J. Jadzyn, G. Czechowski, M. Mucha and E. Nastal, “Dielectric relaxation in polymer dispersed nematic liquid crystal films,” Liquid Crystals, Vol. 26, pp. 453-456, 1999
[22]M. L. Gasperi, “Life prediction modeling of bus capacitor in AC variable-frequency drives,” IEEE Transaction on Industry Applications, Vol. 41, pp. 1430-1435, 2005
[23]N. Cramer, E. Philofsky, L. Kammerdiner anf T. S. Kalkur, “Microwave measurement and modeling of capacitors with tunable dielectric constants,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1, pp. 269-72, 2004
[24]H. C. Nathanson, W. E. Newell, R. A. Wickstrom and J. R. Davis Jr., “The resonant gate transistor,” IEEE Transaction on Electron Devices, Vol. 14 pp. 17-33, 1967
[25]G. N. Nielson and G. Barbastathis, “Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators,” Journal of Microelectromechanical System, Vol. 15, pp. 811-821, 2006
[26]Y. Nemirovsky and O. Bochobza-Degani, “A methodology and model for the pull-in parameters of electrostatic actuators,” Journal of Microelectromechanical Systems, Vol. 10, pp. 601-615, 2001
[27]S. Chandrasekhar, Liquid crystals, second edition, Cambridge University Press, New York, 1992.
[28]P. Yeh and C. Gu, Optics of Liquid Crystal Display, John Wiley & Sons, Inc., New York, 1999.
[29]P.G. DE Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Science Publications, New York, 1993
[30]G. Odian, Principles of Polymerization, John Wiley & Sons, Inc., New York, 2004
[31]Http://filer.case.edu/org/emac270/Chapter2.pdf
[32]李佳榮, “添加偶氮染料分子聚合物球形之聚合物-液晶混合薄膜作為全像光柵紀錄的研究與應用”, 國立成功大學物理研究所
[33]W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” Journal of Physics D, pp. 2145-2151, 1994.
[34]J. J. Wu, C. M. Wang, “Electro-optical properties of aligned polymer dispersed liquid crystal films,” Physics Letters A, pp. 149-154, 1997
[35]D. Coates, “Polymer-dispersed liquid crystal,” Journal of Material Chemistry, Vol. 5, pp. 2063-2072, 1995
[36]E. Marsan, J. Gauthier, M. Chaker and Ke Wu, “Tunable microwave device- status and perspective,” IEEE NEWCAS Conference, pp. 279-282, 2005
[37]C. Weil, S. Müller, P. Scheele, Y. Kryvoshapka, G. Lüeesm, P. Best and R. Jakoby, “Ferroelectric- and liquid crystal- tunable microwave phase shifters,” IEEE European Microwave Conference, Vol. 3, pp. 1431-1434, 2003
[38]M. V. Shakhrai, “Microelectromechanical (MEMS) varactors for mobile communications,” IEEE Proceeding on Electron Devices and Materials, pp. 3-9, 2003
[39]J. J. Yao, “RF MEMS from a device perspective,” Journal of Micromechanics and Microengineering, Vol. 10, R9-R38, 2000
[40]K. Stadius, R. Kaunisto and V. Porra, “Monolithic tunable capacitors for RF applications,” IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 488-491, 2001
[41]M. Bakri-Kassem and R. R. Mansour, “Two movable-plate nitride-loaded MEMS variable capacitor,” IEEE Transaction on Microwave Theory and Techniques, Vol. 52, pp. 831-837, 2004
[42]A. Dec and K. Suyama, “Micromachined varactor with wide tuning range,” IEEE Electronics Letters, Vol. 33, pp. 922-924, 1997
[43]Z. Feng, W. Zhang, B. Su, K. F. Harsh, K. C. Gupta, V. Bright and Y. C. Lee, “Design and modeling of RF MEMS tunable capacitors using electro-thermal actuators,” IEEE MTT-S International Microwave Symposium Digest, Vol. 4, pp. 1507-1510, 1999
[44]T. Nagano, M. Nishigaki, K.Abe, K. Itaya and T. Kawakubo, “Fabrication and Performance of Piezoelectric MEMS Tunable Capacitors Constructed with AlN Bimorph Structure,” IEEE MTT-S International Microwave Symposium Digest, pp. 1285-1288, 2006
[45]C.-Y. Lee and E. S. Kim, “Piezoelectrically actuated tunable capacitor,” IEEE Journal of Microelectromechanical Systems, Vol. 15, pp. 745-755, 2006
[46]A. D. Yalcmkaya, S. Jensen and O. Hansen, “Low voltage, high-Q SOI MEMS varactors for RF applications,” IEEE Solid-State Circuits Conference, pp. 607-610, 2003
[47]R. L. Borwick III, P. A. Stuper, J. DeNatale, R. Anderson, C. and K. Garret, “A high Q, large tuning range, tunable capacitor for RF applications,” IEEE MEMS Conference, pp. 669-672, 2002
[48]J.-B. Yoon and T.-C. Nguyen, “A high-Q tunable micromechanical capacitor with movable dielectric for RF applications,” IEEE Electron Devices Meeting, pp. 489-492, 2000
[49]C. P. Smyth, Dielectric constant and molecular structure, American Chemical Society Monograph Series, 1931
[50]K. C. Kao, Dielectric phenomena in solids, Elsevier Science Publishing Inc., New York, 2004
[51]R. Coelho, Physics of dielectrics for the engineer, Elsevier Science Publishing Inc., New York, 1979
[52]J. Park, J. Lu, S. Stemmer and R. A. York, “Microwave dielectric properties of tunable capacitors employing bismuth zinc niobate thin films,” Journal of Applied Physics, Vol. 97, 1999
[53]Y.-K. Yoon, J. S. Kenney, A. T. Hunt and M. G. Allen, “Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 225-234, 2006
[54]A. Jamil, T. S. Kalkur and N. Cramer, “Tunable ferroelectric capacitor-based voltage-controlled oscillator,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 54, pp. 222-226, 2007
[55]O. G. Vendik, “Insertion loss in reflection-type microwave phase shifter based on ferroelectric tunable capacitor,” IEEE Transaction on Microwave Theory and Techniques, Vol. 55, pp. 425-429, 2007
[56]K. A. Jose, H. Yoon, K. J. Vinoy, P. Sharma, V. K. Varadan and V. V. Varadan, “Low voltage tunable capacitors for RF MEM filters and antenna applications,” IEEE Antennas and Propagation Society International Symposium, Vol. 3, pp. 670-673, 2001
[57]C. Weil, G. Lüeesm and R. Jakoby, “Tunable inverted-microstrip phase shifter device using nematic liquid crystals,” IEEE MTT-S International Microwave Symposium Digest, 2002
[58]T. Nose, T. Yanase, S. Yanagihara and M. Honma, “Transmission properties of the coplanar waveguide type liquid crystal cell,” IEEE International Conference on Infrared and Millimeter Waves, Vol. 2, pp. 567-568, 2005
[59]I. Pérez, J. M. Sánchez-Pena, J. C. Torres, R. Manzazares and J. M. Otón, “Sinusoidal voltage-controlled oscillator based on a liquid crystal cell as variable capacitance,” Japanese Journal of Applied Physics, Vol. 46, pp. 221-223, 2007
[60]F. Goelden, S. Mueller, P. Scheele, M. Wittek and R. Jakoby, “IP3 measurements of liquid crystals at microwave frequencies,” IEEE European Microwave Conference, pp. 971-974, 2006
[61]R. Marin, A. Mössinfer, J. Freese, S. Müller and R. Jakoby, “Basic investigations of 35 GHz reflectarrays and tunable unit-cell for beamsteering application,” IEEE European Radar Conference, pp. 291-294, 2005
[62]N. Martin, N. Tentillier, P. Laurent, B. Splingart, F. Huret, PH. Gelin and C. Legrand, “Electrically microwave tunable components using liquid crystals,” IEEE European Microwave Conference, pp. 1-4, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top