跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江家菱
研究生(外文):Chia-Ling Chiang
論文名稱:以連續流矽膠管供氫管柱結合氫自營菌與零價鐵對水中三氯乙烯去除之研究
論文名稱(外文):Degradation of TCE by autotrophic hydrogen-bacteria combined zero-valent iron in soil columns under continuous addition of H2 gas via membranes conditions
指導教授:曾四恭曾四恭引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:脫氯反應三氯乙烯氫氣零價鐵氫自營菌
外文關鍵詞:DechlorinationTrichloroethene(TCE)Hydrogen(H2)Zero-valent ironAutotrophic hydrogen-bacteria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含氯有機化合物如三氯乙烯,由於具有特殊之物化性質,所以廣泛地使用於工業中作為溶劑,其為具高潛在致癌性,會對人體肝臟和腎臟造成危害之合成有機化合物,若不慎滲漏至地表下,會造成土壤及地下水污染。
本研究主要以管柱試驗模擬現地含水層土壤受三氯乙烯污染之廠址,此技術包含安裝矽膠管以連續流供給氫氣作為電子供給者。實驗分別以氫自營菌、零價金屬鐵及兩者合併等三種實驗室尺度之管柱進行三氯乙烯之處理,結果顯示提供氫氣能增進生物之脫氯反應,將三氯乙烯完全脫氯為甲烷,且無含氯之中間產物生成。於零價鐵系統中,供給氫氣不但可增加還原脫氯反應速率、減少金屬離子之解離,亦可增加乙炔轉換成乙烯或乙烷之速率。本實驗之最終脫氯產物為甲烷、乙烷、乙烯及乙炔,均為脫氯之最終產物,這也顯示本合併處裡系統的確具有應用於現地復育的潛力。
由實驗結果可知氫氣自營菌-零價鐵合併處理的確具有加成效果,證實此合併處理技術可有效實際的應用在處理現地受三氯乙烯和氯化乙烯污染之廠址。
Chlorinated organic compounds, such as trichloroethene(TCE), have been widely used as industrial solvents. They are completely synthetic organic compounds having carcinogen property and are known to cause damage to the human liver and kidney. Their releases into subsurface environments result in contamination of the soil and groundwater.
Column experiments were performed to simulate a aquifers contaminated with TCE in situ. The technology involves installation of hollow fiber membranes to supply hydrogen gas (H2 )as an electron donor. Three laboratory-scale columns were carried out by using combined zero-valent iron with autotrophic hydrogen-bacteria and compared with individual systems . The results show that hydrogen provided promote biological dechlorination in the individually biological and zero-valent iron combined with autotrophic hydrogen-bacteria system, TCE was dechlorinated to methane completely with no chlorinated intermediates were detected. In the zero-valent iron system, supplying of hydrogen gas increased dechlorination rate and suppressing the ionization of zero-valent iron and also can increase the rate of transform acetylene into ethene or ethane.
Dechlorination rate of TCE by combined zero-valent iron with autotrophic hydrogen-bacteria was higher than individual systems. These findings suggest that the combined system is effective practical treatment of TCE and chlorinated ethylenes in contaminated sites.
目錄
中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
表目錄Ⅵ
圖目錄Ⅶ

第 一 章 前言1
1-1 研究緣起1
1-2 研究目的2
1-3 研究內容2

第 二 章 文獻回顧3
2-1 含氯有機化合物3
2-1.1 三氯乙烯之特性3
2-1.2 三氯乙烯對人體健康之影響4
2-1.3 三氯乙烯之地下水污染管制標準5
2-1.4 三氯乙烯之土壤與地下水污染案例5
2-2 含氯有機化合物之整治方法7
2-2.1 物理方法7
a. 抽除處理(pump and treat)7
b. 土壤抽氣法(soil vapor extraction)7
c. 注氣吹氣法(air sparging)8
2-2.2 化學方法8
a. 化學氧化法(chemical oxidation treatment)8
b. 化學還原法9
2-2.3 生物方法
2-2.4 透水性反應牆(permeable reactive barrier)11
2-3 三氯乙烯還原脫氯之反應機制12
2-3.1 三氯乙烯之序列性轉換12
2-3.2 含氯有機物在環境中之轉換13
a. 好氧生物復育13
b. 厭氧生物復育14
c. 生物復育之優缺點17
2-3.3 含氯有機物的生物代謝機制18
a. 共代謝(cometabolism)18
b. 含鹵呼吸作用(halorespiration)19
2-4 零價金屬處理技術21
2-4.1零價金屬處理技術起源21
2-4.2 零價鐵還原脫氯技術21
2-5 以氫氣促進微生物還原脫氯26
2-6 自營氫細菌特性29
2-7 具還原脫氯能力菌種之相關研究31
2-8 自營氫細菌結合零價鐵處理三氯乙烯35

第 三 章 實驗材料與方法37
3-1 實驗流程與研究內容37
3-2 汙泥馴養與培養基組成39
3-3 連續流供氫管柱試驗42
3-4 分析方法44
3-4.1 上部空間氣體分析(headspace)44
3-4.2 氣象層析儀-火焰式離子偵測(GC-FID)44
3-4.3 2-氯酚檢測(HPLC)45
3-4.4 pH檢測45
3-4.5 總鐵消耗分析46
3-5 實驗藥品47
3-5.1 含氯有機物標準品47
3-5.2 零價鐵粉47

第 四 章 結果與討論48
4-1 反應槽之水力流況特性試驗48
4-2 生物污泥之馴養51
4-2.1 菌種初始馴養51
4-2.2 管柱之污泥馴養54
4-3 管柱進流方式試驗55
4-4 供氫與無供氫零價鐵管柱之TCE還原脫氯效率試驗57
4-4.1A 進流TCE 110μmol/L之TCE還原脫氯效率57
4-4.1B 各採樣口TCE降解趨勢及效率之比較66
4-4.2A 進流TCE 50μmol/L之TCE還原脫氯效率69
4-4.2B 各採樣口TCE降解趨勢及效率之比較76
4-5 自營氫細菌管柱及自營氫細菌-零價鐵管柱之TCE還原脫氯效率試驗79
4-5.1A 進流TCE 110μmol/L之TCE還原脫氯效率79
4-5.1B 各採樣口TCE降解趨勢及效率之比較84
4-5.2A 進流TCE 50μmol/L之TCE還原脫氯效率87
4-5.2B 各採樣口TCE降解趨勢及效率之比較90
4-6 綜合比較93

第 五 章 結論與建議96
5-1 結論96
5-2 建議98

參考文獻99

表目錄
表2-1 TCE之物化特性3
表2-2 TCE對人體健康之危害4
表2-3 地下水污染管制標準5
表2-4台灣地區土壤與地下水污染案例6
表2-5常見的電子接受者及氧化還原電位16
表2-6 具脫氯能力菌株之脫氯速率比較20
表2-7 微生物的營養類型29
表2-8 具還原脫氯能力之菌種及其電子供給者34
表3-1 菌種馴養之培養基成分組成40
表3-2 微量元素成分組成40
表3-3 TCE及脫氯產物的停留時間45
表4-1 管柱之水力特性實驗操作結果50
表4-2 反應速率常數之比較93
表4-3 去除效率之比較93
表4-4 質量平衡之比較95
表4-5 脫氯最終產物之比較95

圖目錄
圖2-1 序列式脫氯反應,以PCE為例12
圖2-2 微生物以氫氣作為電子供給者產生ATP之反應機制19
圖2-3 厭氧狀態下, 系統中,主要的三種還原脫氯作用途徑23
圖2-4 三氯乙烯還原脫氯之可能途徑25
圖2-5 橫跨污染暈(cotaminant plume)之微孔隙薄膜供氫系統示意圖27
圖3-1 本研究之實驗流程38
圖3-2 反應槽基本設計架構41
圖3-3 連續流管柱實驗配置圖43
圖4-1 管柱之出流口水力特性曲線49
圖4-2 2-CP馴養之濃度變化52
圖4-3 2-CP馴養之降解效率52
圖4-4 2-CP馴養期間pH之變化53
圖4-5 連續進流式之各採樣口濃度變化56
圖4-6 出口端封鎖之各採樣口濃度變化56
圖4.7 零價鐵管柱系統有無供氫之降解趨勢58
圖4-8 零價鐵管柱系統(無供氫)之TCE降解趨勢及產物組成59
圖4-9 零價鐵管柱系統(供氫)之TCE降解趨勢及產物組成60
圖4-10 供氫與無供氫零價鐵管柱表面變化61
圖4-11 供氫與無供氫零價鐵系統之TCE還原脫氯途徑64
圖4-12 無供氫零價鐵管柱含碳化合物 之質量平衡65
圖4-13 供氫零價鐵管柱含碳化合物 之質量平衡65
圖4-14 零價鐵管柱系統(無供氫)各採樣口之TCE降解趨勢67
圖4-15 零價鐵管柱系統(供氫)各採樣口之TCE降解趨勢67
圖4-16 零價鐵管柱系統(無供氫)各採樣口之TCE去除效率68
圖4-17 零價鐵管柱系統(供氫)各採樣口之TCE去除效率68
圖4.18 零價鐵管柱系統有無供氫之降解趨勢71
圖4.19 有無供氫鐵粉消耗量之變化趨勢72
圖4-20 零價鐵管柱系統(無供氫)之TCE降解趨勢及產物組成73
圖4-21 零價鐵管柱系統(供氫)之TCE降解趨勢及產物組成74
圖4-22 無供氫零價鐵管柱含碳化合物 之質量平衡75
圖4-23 供氫零價鐵管柱含碳化合物 之質量平衡75
圖4-24 零價鐵管柱系統(無供氫)各採樣口之TCE降解趨勢77
圖4-25 零價鐵管柱系統(供氫)各採樣口之TCE降解趨勢77
圖4-26 零價鐵管柱系統(無供氫)各採樣口之TCE去除效率78
圖4-27 零價鐵管柱系統(供氫)各採樣口之TCE去除效率78
圖4-28 生物系統之TCE降解趨勢及產物組成82
圖4-29 鐵結合生物系統之TCE降解趨勢及產物組成83
圖4-30 生物系統各採樣口之TCE降解趨勢85
圖4-31 鐵結合生物系統各採樣口之TCE降解趨勢85
圖4-32 生物系統各採樣口之TCE去除效率86
圖4-33 鐵結合生物系統各採樣口之TCE去除效率86
圖4-34 生物系統之TCE降解趨勢及產物組成88
圖4-35 鐵結合生物系統之TCE降解趨勢及產物組成89
圖4-36 生物系統各採樣口之TCE降解趨勢91
圖4-37 鐵結合生物系統各採樣口之TCE降解趨勢91
圖4-38 生物系統各採樣口之TCE去除效率92
圖4-39 鐵結合生物系統各採樣口之TCE去除效率92
Allen-King, R.M., Halket, R.M. and Burris, D.R. (1997) Reductive Transformation And Sorption Of cis- and trans-1,2-Dichloroethene In A Metallic Iron-Water System. Environmental Toxicology and Chemistry 16(3), 424-429.

Aulenta, F., Pera, A., Rossetti, S., Petrangeli Papini, M. and Majone, M. (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research 41(1), 27-38.

Burris, D.R., Campbell, T.J. and Manoranjan, V.S. (1995) Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System. Environ. Sci. Technol. 29(11), 2850-2855.

Campbell, T.J., Burris, D.R., Roberts, A.L. and Wells, J.R. (1997) Trichloroethylene and Tetrachloroethylene Reduction In A Metallic Iron-Water-Vapor Batch System. Environmental Toxicology and Chemistry 16(4), 625-630.

Chin Jung Lin , S.-L.L. (2005) Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Research 39, 1037-1046.

Christof Holliger a, G.W.b., Gabriele Diekert b; (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiology Reviews 22, 383-398.

Clark, C.J., Rao, P.S.C. and Annable, M.D. (2003) Degradation of perchloroethylene in cosolvent solutions by zero-valent iron. Journal of Hazardous Materials 96(1), 65-78.

Clayton J. Clark, I.a., P.S.C. Raob, Michael D. Annable c (2003) Degradation of perchloroethylene in cosolvent solutions by zero-valent iron. Journal of Hazardous Materials B96, 65-78.



Duhamel, M., Wehr, S.D., Yu, L., Rizvi, H., Seepersad, D., Dworatzek, S., Cox, E.E. and Edwards, E.A. (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Research 36(17), 4193-4202.

Fang, Y., Hozalski, R.M., Clapp, L.W., Novak, P.J. and Semmens, M.J. (2002) Passive dissolution of hydrogen gas into groundwater using hollow-fiber membranes. Water Research 36(14), 3533-3542.

Federico Aulentaa, Antonio Perab, Simona Rossettic, and Marco Petrangeli Papinia, M.M. (2007) Relevance of side reactions in anaerobic reductive
dechlorination microcosms amended with different
electron donors. Water Research 41, 27-38.

Friis, A.K., Heimann, A.C., Jakobsen, R., Albrechtsen, H.-J., Cox, E. and Bjerg, P.L. (2007) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Research 41(2), 355-364.

Hirotaka Fujita, J.I., Masaki Sagehashi, Takao Fujii, Akiyoshi Sakoda (2004) Decomposition of trichloroethene on ozone-adsorbed high silica zeolites. Water Research 38, 166-172.

Holliger, C., Wohlfarth, G. and Diekert, G. (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiology Reviews 22(5), 383-398.

Kao, C.M., Chen, S.C., Wang, J.Y., Chen, Y.L. and Lee, S.Z. (2003a) Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research 37(1), 27-38.

Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y. and Wu, W.S. (2003b) Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Research 37(20), 4885-4894.




Kao, C.M. and Lei, S.E. (2000) Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water Research 34(3), 835-845.

Lampron, K.J., Chiu, P.C. and Cha, D.K. (2001) Reductive Dehalogenation of Chlorinated Ethenes with Elemental Iron: The Role of Microorganisms. Water Research 35(13), 3077-3084.

Lee, T.T., et al. (2001) Efficient Dechlorination of Tetrachloroethylene in Soil Slurry by Combined Use of an Anaerobic Desulfitobacterium sp. Strain Y-51 and Zero-Valent Iron. Journal of Bioscience and Bioengineering 92, 453-458.

Li, Z., Willms, C., Alley, J., Zhang, P. and Bowman, R.S. (2006) A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant--A column study. Water Research 40(20), 3811-3819.

W. Scottorth and Robertw Gillha. (1996) Dechlorination of Trichloroethene in Aqueous Solution Using Fe0. Environ. Sci. Technol. 30, 66-71.

Ma, X., Novak, P.J., Clapp, L.W., Semmens, M.J. and Hozalski, R.M. (2003) Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column. Water Research 37(12), 2905-2918.

Ma, X., Novak, P.J., Semmens, M.J., Clapp, L.W. and Hozalski, R.M. (2006) Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns. Water Research 40(6), 1155-1166.

Maithreepala, R.A. and Doong, R.a. (2004) Synergistic Effect of Copper Ion on the Reductive Dechlorination of Carbon Tetrachloride by Surface-Bound Fe(II) Associated with Goethite. Environ. Sci. Technol. 38(1), 260-268.

Matheson, L.J. and Tratnyek, P.G. (1994) Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ. Sci. Technol. 28(12), 2045-2053.



Ndon, U.J. and Randall, A.A. (1999) Periodic aerated treatment and in-situ bioremediation strategies for polyhalogenated compounds. Water Research 33(11), 2715-2720.

Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R. and Campbell, T.J. (1996) Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. Environ. Sci. Technol. 30(8), 2654-2659.

Schollhorn, A., Savary, C., Stucki, G. and Hanselmann, K.W. (1997) Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions. Water Research 31(6), 1275-1282.

Sokol, R.C., Kwon, O.S., Bethoney, C.M. and Rhee, G.Y. (1994) Reductive Dechlorination of Polychlorinated Biphenyls in St. Lawrence River Sediments and Variations in Dechlorination Characteristics. Environ. Sci. Technol. 28(12), 2054-2064.

Villemur, R., Lanthier, M., Beaudet, R. and Lepine, F. (2006) The Desulfitobacterium genus. FEMS Microbiology Reviews 30(5), 706-733.

Wust, W.F., Kober, R., Schlicker, O. and Dahmke, A. (1999) Combined Zero- and First-Order Kinetic Model of the Degradation of TCE and cis-DCE with Commercial Iron. Environ. Sci. Technol. 33(23), 4304-4309.

Yabusaki, S., Cantrell, K., Sass, B. and Steefel, C. (2001) Multicomponent Reactive Transport in an In Situ Zero-Valent Iron Cell. Environ. Sci. Technol. 35(7), 1493-1503.

Yager, R.M., Bilotta, S.E., Mann, C.L. and Madsen, E.L. (1997) Metabolic Adaptation and in Situ Attenuation of Chlorinated Ethenes by Naturally Occurring Microorganisms in a Fractured Dolomite Aquifer near Niagara Falls, New York. Environ. Sci. Technol. 31(11), 3138-3147.

Yu, S. and Semprini, L. (2002) Comparison of trichloroethylene reductive dehalogenation by microbial communities stimulated on silicon-based organic compounds as slow-release anaerobic substrates. Water Research 36(20), 4985-4996.
何俊明 (2004) 利用「自營性薄膜生物反應槽」進行除氮之硏究. 博士論文--國立臺灣大學環境工程學硏究所.

吳先琪.葉弘德 (2000-2002) 以健康風險管理為依據之含氯有機化合物汙染場址地下水復育技術及決策支援系統架構之研發. 臺北市 : 行政院國家科學委員會.

邱子權 (2004) 有機氯化烴殺蟲劑厭氧微生物降解作用與其菌群結構之研究. 博士論文--國立臺灣大學農業化學研究所.

邱慈娟 (2001) 氫細菌在薄膜反應槽之氯酚脫氯研究. 碩士論文--國立臺灣大學環境工程學研究所.

徐貴新, 林. (2006) 土壤污染與復育技術概論.

張朝謙 (2005) 利用供氫之薄膜生物反應槽進行氯酚還原脫氯之研究. 博士論文--國立臺灣大學環境工程學研究所.

陳文福 (2005) 台灣的地下水.

陳家洵 (2004) 土壤及地下水污染.

程淑芬 (2000) 斗閘式現地地下水污染復育技術之探討 : 含氯有機化合物以零價金屬反應性透水牆還原脫氯之研究. 博士論文--國立臺灣大學環境工程學研究所.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊