跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建宏
研究生(外文):Chien-Hung Lin
論文名稱:以微波水熱法合成硫化鋅觸媒光催化降解水中染劑
論文名稱(外文):Photocatalytic Oxidation of Dye over ZnS Synthesized via Microwave Irradiation
指導教授:駱尚廉駱尚廉引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:微波光催化硫化鋅甲基橙甲基紅
外文關鍵詞:microwave irradiationpotocatalytic oxidationZnSmethyl organemethyl red
相關次數:
  • 被引用被引用:2
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用UV/光觸媒系統來去除水中污染物,為近年來許多學者的研究課題。本研究利用微波水熱法製備光觸媒(ZnS),此方法較傳統水熱法加熱迅速且易準確的控制溫度,在製備過程中利用poly N-vinyl-2-pyrrolidone (PVP)作為穩定劑,並以偶氮染劑甲基橙(MO)及甲基紅(MR)作為目標污染物進行光催化反應,探討合成溶劑、鋅硫比例、微波功率、反應時間對光觸媒活性的影響。
本實驗中發現,以乙醇為溶劑時可合成出粒徑最小的ZnS,而PVP的添加可改善ZnS的凝聚現象,增加可吸收波長的範圍。當PVP添加過量時,觸媒活性反而降低。隨著硫鋅比例增加( S2-/Zn2+大於1時), ZnS粒徑尺寸亦隨之增加。合成功率增加至800 W,所合成的ZnS其光催化能力最強。合成時微波加熱的時間增加,其所生成的ZnS粒徑尺寸也隨之增加,進而使材料之反應活性減小。
光催化反應實驗中, pH=7~12時,由於MO及MR表面帶負電而與ZnS表面相斥,隨著pH值上升,ZnS對MO及MR的降解率反而降低。當污染物之初始濃度增加時,由於光線的穿透量減少,造成電子電洞對的生成量下降,使光催化反應受到抑制,ZnS對MO及MR的降解率也隨之下降。此外,溫度同樣在光催化反應中扮演重要角色,根據實驗本材料對於MO與MR的最佳光催化反應溫度為25℃。
UV / Photocatalyst systems removing contaminants from water have been widely reported in recent years. Photocatalyst ZnS were prepared via a microwave hydrothermal, which is faster than the traditional hydrothermal method and control temperature apt to be accurate. In the preparation process, poly(N-vinyl-2-pyrrolidone) (PVP) was added as a stablelizer, the azo dyes, content methyl orange (MO) and methyl red (MR), were used as a target contaminants in the photocatalytic reaction to discuss the effects of synthetic solvent, the ratio of sulfur/zinc, microwave power, reaction time on the photocatalytic activity.
The synthesis of ZnS has minimum size in ethanol solution. ZnS agglomeration can be improved by adding PVP to increase the absorption wavelength range. As the proportion of sulfur/zinc increases (S2-/Zn2+ is greater than 1), the particle size of ZnS increase. When synthesis power increase up to 800 W, photocatalytic ability of synthesized ZnS is the strongest than other power. As synthesis of microwave heating time increasing, it generated ZnS particle size has increased. However, the ZnS ability was decreased.
In the photocatalytic reaction, the surface of target contaminants, MO and MR, are both negative charges which would lead to repulsion between the contaminants and ZnS at pH=7~12. As the pH value increases, the degradation rate of MO and MR using ZnS would decrease. When initial concentration increases, the formation of electron hole pairs would decline because of less light penetration. Thus, photocatalytic reaction was inhibited. Besides, temperature also plays an important role in the photocatalytic reaction. According to the experiment, the best temperature of photocatalytic reaction for ZnS is 25°C.
目錄
摘要…………………………………………………………………………I
Abstract……………………………………………………………………II
圖目錄……………………………………………………………………IX
表目錄……………………………………………………………………XII
第一章 緒論………………………………………………………………1
1-1 研究緣起………………………………………………………………1
1-2 研究目的與內容………………………………………………………2
1-2-1 研究目的……………………………………………………………2
1-2-2 研究內容……………………………………………………………2
第二章 文獻回顧…………………………………………………………4
2-1 染料……………………………………………………………………4
2-1-1 染料種類……………………………………………………………4
2-1-2 染料污染現況………………………………………………………6
2-1-3 偶氮染料來源、用途與對人體環境之傷害性……………………6
2-2 微波水熱法……………………………………………………………8
2-2-1 水熱法之原理………………………………………………………8
2-2-2 水熱法之優點………………………………………………………9
2-2-3 微波加熱原理………………………………………………………9
2-3 光化學反應理論……………………………………………………10
2-3-1 光化學反應機制…………………………………………………10
2-3-2 光觸媒基本介紹…………………………………………………14
2-3-3 提升光觸媒活性方法……………………………………………16
2-3-4 影響半導體光催化反應因素……………………………………20
2-4 硫化鋅之合成………………………………………………………24
2-5 光催化反應動力分析………………………………………………26
第三章 實驗方法與材料…………………………………………………28
3-1 實驗材料……………………………………………………………28
3-1-1藥品…………………………………………………………………28
3-1-2實驗器材……………………………………………………………29
3-2實驗內容………………………………………………………………31
3-2-1實驗架構圖…………………………………………………………31
3-2-2觸媒合成……………………………………………………………32
3-2-3實驗方法……………………………………………………………32
3-2-4操作因子……………………………………………………………33
3-2-5實驗步驟……………………………………………………………33
3-3分析方法………………………………………………………………34
3-3-1觸媒物性分析………………………………………………………34
3-3-2目標污染物分析……………………………………………………39
第四章 結果與討論………………………………………………………41
4-1 光觸媒之特性鑑定…………………………………………………41
4-1-1 合成ZnS之溶劑、溫度選擇………………………………………41
4-1-2 比表面積分析……………………………………………………42
4-1-3 XRD 分析…………………………………………………………43
4-1-4 表面特性分析……………………………………………………44
4-1-5 UV-Vis spectrum 分析…………………………………………47
4-2 MO與MR之最大吸收波長鑑定………………………………………49
4-3 背景實驗……………………………………………………………51
4-3-1 揮發實驗…………………………………………………………51
4-3-2 直接光解實驗……………………………………………………52
4-3-3 催化觸媒之最佳添加量…………………………………………54
4-3-4 吸附實驗…………………………………………………………55
4-4 光催化降解實驗……………………………………………………56
4-4-1 添加不同量之硫乙醯胺之影響…………………………………57
4-4-2 添加不同量之PVP之影響…………………………………………59
4-4-3 以不同合成功率之影響…………………………………………62
4-4-4 以不同反應時間之影響…………………………………………64
4-4-5 溫度對污染物降解的影響………………………………………66
4-4-6 pH值對污染物降解的影響………………………………………68
4-4-7 進流濃度對降解效果的影響……………………………………72
第五章 結論與建議………………………………………………………75
5-1 結論…………………………………………………………………75
5-2 建議…………………………………………………………………76
參考文獻…………………………………………………………………77
附錄 實驗數據…………………………………………………………80
Directive 2002/61/EC of the european parliament and of the council of 19 July 2002 amending for the nineteenth time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (azocolourants), Official Journal of the European Communities,L243,15-18 (2002)

Dong, L., Chu, Y., Zhang, Y., Liu, Y., and Yang, F., “Surfactant-assistant and facile synthesis of hollow ZnS nanospheres,” Journal of Colloid and Interface Science, Vol. 308, 258–264 (2007)

Grieken, R. van, Aguado, J., Lopez-Munoz, M. J., and Marugan J., “Synthesis of size-controlled silica-supported TiO2 photocatalysts,” Journal of Photochemistry Photobiology A:chemistry, Vol. 148, 315-322 (2002)

Herrmann, J. M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, Vol. 53, 115-129 (1999)

Hu, J. S., Ren, L. L., Guo, Y. G., Liang, H. P., Cao, A. M., Wan, L. J., and Bai, C. L., “Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles,” Angew. Chem. Int. Ed. , Vol. 44, 1269 –1273 (2005)

Jian, W., Zhuang, J., Zhang, D., Dai, J., Yang, W., and Bai, Y., “Synthesis of highly luminescent and photostable ZnS: Ag nanocrystals under microwave irradiation,” Materials Chemistry and Physics, Vol. 99, 494-497 (2006)

Kansal, S.K., Singh, M., and Sud, D., “Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts,” Journal of Hazardous Materials, Vol. 141, 581–590 (2007)

Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemistry Engineering, January, 95-100 (1982)



Linsebigler, A. L., Lu, G., Yates, and Jr. J. T., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemistry Reviews, Vol. 95, 735-758 (1995)

Lindner, M., Theurich J., and Bahnemann, W., “Photocatalytic degradation of organic compounds : Accelerating the process efficiency,” Water Science Technology, 35, 4, 79-86 (1997)

Martinez, C. L. T., Kho, R., Mian, O. I., and Mehra1, R. K., “Efficient Photocatalytic Degradation of Environmental Pollutants with Mass-Produced ZnS Nanocrystals,” Journal of Colloid and Interface Science, Vol. 240, 525–532 (2001)

Miao, S., Liu, Z., Han, B., Yang, H., Miao, Z., and Sun, Z., “Synthesis and characterization of ZnS-montmorillonite nanocomposites and their application for degrading eosin B,” Journal of Colloid and Interface Science, Vol. 301, 116–122 (2006)

Ni, Y., Yina, G., Hong, J., and Xu, Z., “Rapid fabrication and optical properties of zinc sulfide nanocrystallines in a heterogeneous system,” Materials Research Bulletin, Vol. 39, 1967-1972 (2004)

Paola, A. Di, Garcia-Lopez, E., Ikeda, S., Marci, G., Ohtani B., and Palmisano L., “Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2,” Catalysis Today, Vol. 75, 87-93 (2002)

Peng, C., Zhang, Y., Tang, Y., Li, H., and Liu, Y., “Preparation and properties of phosphotungstic acid/titania photocatalysts by solvothermal method,“ Chemical Journal on Internet, Vol.7, P.34 (2005)

Shao, H. F., Qian, X. F., and Zhu, Z. K., “The synthesis of ZnS hollow nanospheres with nanoporous shell,” Journal of Solid State Chemistry, Vol. 178, 3522–3528 (2005)

Wada, Y., Yin H., and Yanagida, S., “Environmental remediation using catalysis driven under electromagnetic irradiation,” Catalysis Surveys from Japan, Vol. 5, No. 2, 127-138 (2002)


Yang, H., Huang, C., Su, X., and Tang, A., “Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles,” Journal of Alloys and Compounds, Vol. 402, 274-277 (2005)

Yu, X., Wu, Q., Jiang S., and Guo Y., “Nanoscale ZnS/TiO2 composites: Preparation, characterization, and visible-light photocatalytic activity,” Materials Characterization Vol. 57, 333-41 (2006)

Zhao, Y., Hong, J.-M., and Zhu, J.-J., “Microwave-assistedself-assembled ZnS nanoballs,” Journal of Crystal Growth, Vol. 270, 438–445 (2004)

歐信宏,「光觸媒間電子傳遞效應催化降解4-CP及4-NP」,碩士論文,國立臺灣大學環境工程學研究所,2002年

甘佳欣,「以次氯酸去除染整廢水色度之反應動力學研究」,碩士論文,國立中山大學環境工程研究所,1999年

洪楨琳,「溫度與濕度對光催化分解苯蒸氣之影響研究」,碩士論文,國立中山大學環境工程研究所,2001年

劉全得,「偶氮染料之二氧化鈦光催化脱色反應特性研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,2005年

蔡建成,「由水熱處理二氧化鈦所合成奈米管之結構分析」,博士論文,國立成功大學化學工程學系,2005年

陳姿瑜,「金屬改質奈米二氧化鈦觸媒之研究與應用」,碩士論文,國立清華大學原子科學系,2006年

張力德、牟季美,「納米材料與納米結構」,科學出版社,2001年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top