跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮珮華
研究生(外文):Pei-Hua Juan
論文名稱:以固相微萃取技術發展偵測室內MVOCs之方法
論文名稱(外文):Determinations of Microbial Volatile Organic Compounds by a Solid-Phase Microextraction Device
指導教授:蔡詩偉蔡詩偉引用關係
指導教授(外文):Shih-Wei Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:54
中文關鍵詞:固相微萃取外推式採樣MVOCs氣相層析質譜儀
外文關鍵詞:solid-phase microextractionMVOCsSPME rapid air samplingGC/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用固相微萃取技術(Solid-Phase Microextraction, SPME)免溶劑脫附與操作簡單等優點,發展多種MVOCs同步偵測之採樣分析方法,以便在未來能更方便且準確地評估室內MVOCs濃度並推估室內環境中黴菌生長狀況,進而提高室內空氣品質。

本研究依據文獻記載選擇存在於室內環境中之MVOCs進行測試(包括: 1-butanol、1-octen-3-ol、2-methyl-1-propanol、2-heptanone, 2-pentylfuran、2-hexanone與3-methyl-1-butanol)。研究中使用所選定的65 μm PDMS/DVB纖維搭配動態暴露系統,使纖維暴露於固定流速下( 17.77 cm3/min)進行外推式的採樣,並利用已知濃度的MVOCs進行不同暴露時間之測試,再利用氣相層析質譜儀(GC/MS)進行樣本的脫附與分析。

本研究所設計之SPME纖維外推採樣方法對多種MVOCs同步暴露與偵測後發現,除了隨著暴露濃度與暴露時間乘積的增加、纖維上MVOCs之採集量將增加外,在相同濃度變化條件下,纖維對MVOCs的採樣率會隨著暴露時間的增加而變小。另外,在相同暴露時間變化條件下,纖維對MVOCs的採樣率亦會隨著暴露濃度的不同而呈現差異;上述觀察顯示,纖維上之MVOCs採集量同時受到暴露濃度、暴露時間、及暴露濃度與暴露時間乘積的共同影響。

本研究利用回歸分析後發現,纖維上各物質之採集量與暴露濃度及暴露時間之乘積呈現分段線性關係,而所得之採樣率如下:2-methyl-1-propanol 0.06~1.21 cm3/s (採樣時間: 10秒~40分鐘)、1-butanol 0.05~1.75 cm3/s (採樣時間: 10秒~60分鐘)、1-octen-3-ol 0.50~0.98 cm3/s (採樣時間: 20秒~40分鐘)、2-heptanone 0.41~1.04 cm3/s (採樣時間: 10秒~60分鐘)、2-pentylfuran 0.55~0.97 cm3/s (採樣時間: 10秒~60分鐘)、2-hexanone 0.27~1.07 cm3/s (採樣時間: 10秒~60分鐘)以及3-methyl-1-butanol 0.26~2.19 cm3/s (採樣時間: 20秒~40分鐘)。此外,儀器偵測極限為0.20到1.56 ng/μL,方法偵測極限為1.15到3.74 ng/μL。本研究所設計之MVOCs採樣方法具有免溶劑脫附、樣本前處理時間短、組合簡單、攜帶方便、分析時間短等優點;配合GC的使用,未來可實際應用於室內空氣品質之監測。
Indoor air pollution is a major problem of public health nowadays because people usually spend more than 80% of time indoor. Fungus is an important indoor air pollutant and is known to be a fundamental allergen of asthma. Microbial volatile organic compounds (MVOCs) which are the metabolites of fungi can also be used to relate the presence of fungi even there is no spore. To improve the quality of indoor air, setting standards for indoor biological hazards are very important. Therefore the purpose of this study is to develope the sampling and analysis technique for indoor MVOCs based on solid-phase microextraction (SPME) device.

SPME technique was utilized as a rapid air sampling sampler while its performances on major indoor MOVCS, including 1-butanol, 1-octen-3-ol, 2-methyl-1-propanol, 2-heptanone, 2-pentylfuran, 2-hexanone and 3-methyl-1-butanol were validated. 65 μm PDMS/DVB fiber was selected. Known concentration of MVOCs were generated in dynamic vapor generation system for the validations of SPME rapid air sampling samplers. After sampling, the sampler was inserted into the injection port of gas chromatography with mass spectrometry (GC/MS) for thermal desorption and analysis.

The results showed that the desorption efficiency was 100% when the time for thermal desorption was 1.5 min. It was also found that different ranges of linearity were observed for all the MVOCs at different sampling conditions. Under the sampling time of 10 seconds to 60 minutes, the experimental sampling rates were 0.05~1.75 cm3/s, 0.41~1.04 cm3/s, 0.55~0.97 cm3/s and 0.27~1.07 cm3/s for 1-butanol, 2-heptanone, 2-pentylfuran and 2-hexanone, respectively. Under the sampling time of 20 seconds to 40 minutes, the experimental sampling rates were 0.50~0.98 cm3/s and 0.26~2.19 cm3/s for 1-octen-3-ol and 3-methyl-1-butanol, respectively. The experimental sampling rates was 0.06~1.21 cm3/s for 2-methyl-1-propanol under the sampling time of 10 seconds to 40 minutes. Moreover, the instrumental detection limit (IDL) ranged between 0.20 and 1.56 ng/μL while the method detection limit (MDL) ranged between 1.15 and 3.74 ng/μL. The designed rapid air sampling device for MVOCs has the advantages of SPME technique which can be used for monitoring indoor air quality (IAQ) in the future.
致謝 I
中文摘要 II
ABSTRACT III
LIST OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII

CHAPTER 1 INTRODUCTION 1
1.1 INDOOR AIR QUALITY 1
1.2 MOLDS AND MICROBIAL VOLATILE ORGANIC COMPOUNDS 3
1.3 COMMON INDOOR MOLDS IN TAIWAN 4
1.4 MVOCS PRODUCED BY MOLDS 5

CHAPTER 2 SOLID-PHASE MICROEXTRCTION, SPME 6
2.1 SPME TECHNIQUE 6
2.2 COATINGS OF SPME FIBERS 8
2.3 RAPID AIR SAMPLING- INTERFACE CALIBRATION THEORY 9

CHAPTER 3 RESEARCH OBJECTIVES AND STRUCTURE 16
3.1 RESEARCH OBJECTIVES 16
3.2 RESEARCH STRUCTURE 17


CHAPTER 4 MATERAILS AND METHODS 18
4.1 CHEMICALS 18
4.2 STANDARDS 18
4.3 DYNAMIC VAPOR GENERATION SYSTEM 18
4.4 GC CHROMATOGRAPHIC ANALYSIS 19
4.5 DETECTION LIMIT 20
4.6 SPME FIBERS 21

CHAPTER 5 RESULTS AND DISCUSSIONS 22
5.1 SPME FIBER 22
5.2 DETECTION LIMIT 22
5.3 DETERMINE THE EFFECTS OF EXPOSURE TIME 22
5.4 SAMPLING RATES OF SPME SAMPLER FOR MVOCS 24

CHAPTER 6 CONCLUSIONS 25

REFERENCES 26
APPENDIX INTRODUCTION TO FUNGI (MOLD) 51

LIST OF TABLES

Table I. Mold species and their specific MVOCs. 31
Table II. The properties and exposure limits of MVOCs. 32
Table III. Sampling mode selection criteria. 33
Table IV. Types of SPME fibers and their standards. 34
Table V. SPME fiber selection. 35
Table VI. Linearity range for each MVOC. 36

LIST OF FIGURES

Figure 1. Mold life cycle. 37
Figure 2. Mold gives off spores, cellular debris and MVOCs. 38
Figure 3. The pathway of producing MVOCs and toxic metabolites by molds. 39
Figure 4. SPME extraction device. 40
Figure 5. Modes of SPME operation. 41
Figure 6. Schematic of sampling with exposed and retracted SPME fibers. 42
Figure 7. Schematic of rapid extraction with solid SPME fiber coating in a cross-flow. 43
Figure 8. Vapor generation and exposure system. 44
Figure 9. Chromatogram of MVOCs from sample injection. 45
Figure 10. Effect of extraction time on the adsorption of MVOCs. 46
Figure 11. Mass collected profiles of 2-methyl-1-propanol. 47
Figure 12. Mass collected profiles of 1-butanol. 47
Figure 13. Mass collected profiles of 3-methyl-1-butanol. 48
Figure 14. Mass collected profiles of 2-hexanone. 48
Figure 15. Mass collected profiles of 2-heptanone. 49
Figure 16. Mass collected profiles of 1-octen-3-ol. 49
Figure 17. Mass collected profiles of 2-pentylfuran. 50
1. Wady L., Bunte A., Pehrson C. and Larsson L..
Use of gas chromatography-mass spectrometry/solid phase microextraction for the identification of MVOCs from moldy building materials. Journal of Microbiological Methods, 52; 325– 332 (2002)
2. Pierson W.E. and Koenig J.Q.. Respiratory effects of air pollution on allergic disease. Journal of Allergy and Clinical Immunology, 90; 557-66 (1992)
3. Samet J.M., Marbury M.C. and Spengler J.D.. Health effects and sources of indoor air pollution. Part 1. American Reviews of Respiratory Diseses, 136; 1486-508 (1987)
4. Brunekreef B., Dockery D.W., Speizer F.E.,Ware J.H., Spengler J.D. and Ferris B.G.. Home dampness and respiratory morbidity in children. American Reviews of Respiratory Diseses, 140; 1363-1367 (1989)
5. Timonen K.L., Pekkanen J., Korppi M., Vahteristo M. and Salonen R.O.. Prevalence and characteristics of children with chronic respiratory symptoms in Eastern Finland. European Respiratory Journal, 8; 1155-1160 (1995)
6. Hopton J.L. and Hunt S.M.. Housing conditions and mental health in a disadvantaged are in Scotland. Journal of Epidemiology and Community Health, 50; 56-61 (1996)
7. Pirhonen I., Nevalainen A., Husman T. and Pekkanen J.. Home dampness, moulds and their influence on respiratory infections and symptoms in adults in Finland. European Respiratory Journal, 9; 2618-2622 (1996)
8. Dale R.E., Zqanenburh H., Burnett R. and Franklin C.A.. Respiratory health effects of home dampness and molds among Canadian children. American Journal of Epidemiology, 134; 196-203 (1991)
9. Spengler J.D., Neas L., Nakai S., Dockery D., Speizer F.,Ware J. and Raizenne M.. Respiratory symptoms and housing characteristics. Indoor Air, 4; 72- 82 (1994)
10. Verhoeff A.P. and Burge H.A.. Health risk assessment of fungi in home environments, Annals of Allergy. Asthma & Immunology, 78; 544-556 (1997)
11. Pasanen A.L.. A review: fungal exposure assessment in indoor environments. Indoor Air, 11; 87-98 (2001)
12. Su H.J.. Study on Drafting the Indoor Air Quality Standard. Environmental Protection Administration Executive Yuan, R.O.C.. Plan Number: EPA-88-FA31-03-0007 (1999)
13. Crook B.. Inertial samplers: biological perspectives. In: Cox, C.S. and Wathers, C.W. (eds), Bioaerosol Handbook, Boca Raton, Lewis Publishers, 247-276 (1995)
14. Dillon H.K., Heinsohn, P.A. and Miller J.D.. Field guide for the determination of biological contaminants in environmental samples. Fairfax, American Industrial Hygiene Association (1996)
15. Schleibinger H., Laubmann D., Bratting C., Mangler M., Eis D. and Ruden H.. Emission patterns and emission rates of MVOC and the possibility for predicting hidden mold damage? Indoor Air, 15 (9); 98–104 (2005)
16. Ji B.F. and Su H.J.. Fungal growth on building materials. Master Thesis. Institute of Environmental and Occupational Health Medical, National Cheng Kung University (2003)
17. Wessen B. and Schoeps K.O.. Microbial volatile organic compounds-what substances can be found in sick buildings? Analyst, 121; 1203-1205 (1996)
18. Pasanen A.L., Lappalainen S. and Pasanen P.. Volatile organic metabolites associated with some toxic fungi and their mycotoxins. Analyst, 121; 1949-1953 (1996)
19. Wady L. and Larsson L.. Determination of microbial volatile organic compounds adsorbedon house dust particles and gypsum board using SPME/GC-MS. Indoor Air, 15 (9); 27–32 (2005)
20. Elke K., Begerow J., Oppermann H., Kramer U., E., Jermann E. and Dunemann L.. Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID—a new feasible approach for the detection of an exposure to indoor mould fungi? Journal of Environmental Monitoring, 1; 445-452 (1999)
21. Kuo Y.M. and Li C.S.. Seasonal fungus prevalence inside and outside of domestic environments in the subtropical climate. Atmospheric Environment, 28 (19); 3125-3130 (1994)
22. Su H.J., Wu P.C., Chen H.L., Lee F.C. and Lin L.L.. Exposure assessment of indoor allergens, endotoxin and airborne fungi for homes in southern Taiwan. Environmental Research, 85; 135-144 (2001)
23. Su H.J., Wu P.C. and Lin C.Y.. Fungal exposure of children at homes and schools: a health perspective. Archives of Environmental Health, 56 (2); 144-149 (2001)
24. Pasanen A.L.. A review: Fungal exposure assessment in indoor environments. Indoor Air, 11; 87-98 (2001)
25. Fischer G., Schwalbe R., Moller M., Ostrowski R. and Dott W.. Species-specific of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere, 39 (5); 795-810 (1999)
26. Fiedler K., Schütz E. and Geh S.. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204; 111-121 (2001)
27. Wilkins K., Larsen K. and Simkus M.. Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere, 41; 437-446 (2000)
28. Gao P., Korley F., Martin J. and Chen B.T.. Determination of Unique Microbial Volatile Organic Compounds Produced by Five Aspergillus Species Commonly Found in Problem Buildings. AIHA Journal, 63; 135-140 (2002)
29. Pasanen A.L., Korpi A., Kasanen J.P. and Pasanen P.. Critical aspect on the significance of microbial volatile metabolites as indoor air pollutants. Environment International, 24 (7); 703-712 (1998)
30. Augusto F., Koziel J. and Pawliszyn J.. Design and Validation of Portable SPME Devices for Rapid Field Air Sampling and Diffusion-Based Calibration. Analytical Chemistry, 73; 481-486 (2001)
31. Pawliszyn J.. Solid Phase Microextraction: Theory and Practice. Wiley-VCH Inc., New York (1997)
32. Pawliszyn J.. Applications of solid phase microextraction. RSC, Cornwall, UK (1999)
33. Ouyang G. and Pawliszyn J.. SPME in environmental analysis. Analytical and Bioanalytical Chemistry, 386; 1059-1073 (2006)
34. Koziel A.J. and Novak I.. Sampling and sample-preparation strategies based on solid-phase microextraction for analysis of indoor air. Trends in Analytical Chemistry, 21 (12); 840-850 (2002)
35. Koziel J., Jia M. and Pawliszyn J.. Air Sampling with Porous Solid-Phase Microextraction Fibers. Analytical Chemistry, 72; 5178-5186 (2000)
36. Edward N.F., Paul .S. and Dings J.C.. A new method for prediction coefficients of binary gas-phase diffusion coefficient. Industrial and Engineering Chemistry, 58 (5); 19-27 (1966)
37. Tsai S.W. and Chang T.A.. Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextraction device. Journal of Chromatography A, 954; 191-198 (2002)
38. Tsai S.W. and Juan P.H.. Diffusive sampling of MVOCs by a solid-phase microextraction device. NSC 94-2314-B-002-313 (2006)
39. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi
40. Koziel J., Jia M., Khaled A., Noah J. and Pawliszyn J.. Field air analysis with SPME device. Analytica Chimica Acta , 400; 153-162 (1999)
41. Gorecki T. and Pawliszyn J.. Field-portable solid-phase microextraction/fast GC
system for trace analysis. Field Analytical Chemistry and Technology, 1 (5); 277-284 (1997)
42. Jia M., Koziel J. and Pawliszyn J.. Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography. Field Analytical Chemistry and Technology, 4 (2-3); 73-84 (2000)
43. http://www.mapii.com/mold.php
44. http://www.wbdg.org/design/env _iaq.php
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top