|
PART 1:Investigation of nanoparticles as photosensitizer carriers for photodynamic therapy 1.Kristan A. Keyes A Larry Mann A Karen Cox, Patti Treadway A Philip Iversen A Yun-Fei Chen, Beverly A. Teicher, Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology., Cancer Chemother Pharmacol 51 (2003) 321-327 2.Young D. Jung, Syed A. Ahmad, Yoshito Akagi, Yutaka Takahashi, Wenbiao Liu, Niels Reinmuth, Raymond M. Shaheen, Fan Fan, Lee M. Ellis, Role of the tumor microenvironment in mediating response to anti-angiogenic therapy., Cancer and Metastasis Reviews 19 (2000) 147-157 3.Harold F. Dvorak, Lawrence F. Brown, Michael Detmar, Ann M. Dvorak, Vascular Permeability Factor/Vascular Endothelial Growth Factor, Microvascular Hyperpermeability, and Angiogenesis., American Journal of Pathology 146 (1995) 1029-1035 4.DVORAK HF, NAGY JA, DVORAK JT, DVORAK AM, Identification and Characterization of the Blood Vessels of Solid Tumors That Are Leaky to Circulating Macromolecules., American Journal of Pathology 133 (1988) 95-105 5.SCHERPHOF G, ROERDINK F, DIJKSTRA J, ELLENS H, DEZANGER R, WISSE E, Uptake of Liposomes by Rat and Mouse Hepatocytes and Kupffer Cells. Biol. Cell 47 (1983) 47-58 6.M. Stubbs, Tumour pH, in: M. Molls, P. Vaupel (Eds.), Blood Perfusion and Microenvironment of Human Tumors: Implications for Clinical Radiooncology, Springer-Verlag, Berlin, 2000, pp. 113–120. 7.SUSAN K. HOBBS, WAYNE L. MONSKY, FAN YUAN, W.GREGORY ROBERTS, LINDA GRIFFITH, VLADIMIR P. TORCHILIN, RAKESH K. JAIN, Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment., Proc. Natl. Acad. Sci. 95 (1998) 4607-4612 8.YUAN F, DELLIAN M, FUKUMURA D, LEUNIG M, BERK DA, TORCHILIN VP, JAIN RK, Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size., Cancer Research 55 (1995) 3752-3756 9.Annelies S.L. Derycke, Peter A.M. de Witte, Liposomes for photodynamic therapy., Advanced Drug Delivery Reviews 56 (2004) 17-30 10.Ging-Ho Hsiue, Chun-Hung Wang, Chun-Liang Lo, Chau-Hui Wang, Ju-Pi Li, Jia-Ling Yang, Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) diblock copolymer for application in drug delivery., International Journal of Pharmaceutics 317 (2006) 69-75 11.Chau-Hui Wang, Chun-Hung Wang, Ging-Ho Hsiue, Polymeric micelles with a pH-responsive structure as intracellular drug carriers., Journal of Controlled Release 108 (2005) 140-149 12.Zhonggao Gao, Heidi D. Fain, Natalya Rapoport, Ultrasound-Enhanced Tumor Targeting of Polymeric Micellar Drug Carriers., Mol Pharm. 1 (2004) 317-330 13.Vladimir P. Torchilin, Structure and design of polymeric surfactant-based drugdelivery systems., Journal of Controlled Release 73 (2001) 137-172 14.Christine Allen , Jeannie Han , Yisong Yu , Dusica Maysinger , Adi Eisenberg, Polycaprolactone–b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone., Journal of Controlled Release 63 (2000) 275-286 15.G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y.Sakurai, K. Kataoka, Block copolymer micelles for drug delivery: loading and release of doxorubicin., Journal of Controlled Release 48 (1997) 195-201 16.Glen S. Kwon, Teruo Okano, Polymeric micelles as new drug carriers., Advanced Drug Delivery Reviews 21 (1996) 107-116 17.Glen S. Kwon, Kazunori Kataoka, Block copolymer micelles as long-circulating drug vehicles., Advanced Drug Delivery Reviews 16 (1995) 295-309 18.J.M. Metselaar, E. Mastrobattista and G. Storm, Liposomes for Intravenous Drug Targeting: Design and Applications., Mini Reviews in Medicinal Chemistry 2 (2002) 319-329 19.Characterization of Shell Crosslinked Nanoparticles as a Drug Carrier for Photodynamic Therapy, 黃明怡, 2005, 碩士論文--國立臺灣大學醫學工程研究所 20.Thomas J. Dougherty, Charles J. Gomer, Barbara W. Henderson, Giulio Jori, David Kessel, Mladen Korbelik, Johan Moan, Qian Peng, Photodynamic Therapy., Journal of the National Cancer Institute 20 (1998) 889-905 21.Teiten MH, Bezdetnaya L, Merlin JL, Bour-Dill C, Pauly ME, Dicato M, Guillemin F, Effect of meta-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy on sensitive and multidrug-resistant human breast cancer cells., J. Photochem. Photobiol. B: Biol. 62 (2001) 146-152 22.Melnikova VO, Bezdetnaya LN, Bour C, Festor E, Gramain MP, Merlin JL, Potapenko AY, Guillemin F, Subcellular localization of meta-tetra(hydroxyphenyl) chlorin in human tumor cells subjected to photodynamic treatment., J. Photochem. Photobiol. B: Biol. 49 (1999) 96-103 23.Xintao Shuai, Hua Ai, Norased Nasongkla, Saejeong Kim, Jinming Gao, Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery., Journal of Controlled Release 98 (2004) 415-426 24.S. Marchal, L. Bezdetnaya, F. Guillemin, Modality of Cell Death Induced by Foscan-Based Photodynamic Treatment in Human Colon Adenocarcinoma Cell Line HT29., Biochemistry (Moscow) 69 (2004) 45-49 25.Yaron Perry, M.D., Michael W. Epperly, Ph.D., Hiran C. Fernando, M.D., Ed Klein, M.D., Sid Finkelstein, M.D., Joel S. Greenberger, M.D., James D. Luketich, M.D., Photodynamic Therapy Induced Esophageal Stricture—An Animal Model: From Mouse to Pig., Journal of Surgical Research 123 (2005) 67-74 26.Yoshiharu Ninomiya, Yoshiyasu Itoh, Shingo Tajima, Akira Ishibashi, In vitro and in vivo expression of protoporphyrin IX induced by lipophilic 5-aminolevulinic acid derivatives., Journal of Dermatological Science 27 (2001) 114-120 27.Qian Peng, Trond Warloe, Johan Moan, Aslak Godal, Fabio Apricena, Karl-Erik Giercksky, Jahn M. Nesland, Antitumor Effect of 5-Aminolevulinic Acid-mediated Photodynamic Therapy Can Be Enhanced by the Use of a Low Dose of Photofrin in Human Tumor Xenografts., Cancer Research 61 (2001) 5824-5832 28.A Casas, AM del C Batlle, AR Butler, D Robertson, EH Brown, A MacRobert, PA Riley, Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures., British Journal of Cancer 80 (1999) 1525-1532 29.V. Kirveliene, G. Grazeliene, D. Dabkeviciene, I. Micke, D. Kirvelis, B. Juodka, J. Didziapetriene, Schedule-dependent interaction between Doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo., Cancer Chemother Pharmacol 57 (2006) 65-72 30.Martijn Triesscheijn, Marjan Ruevekamp, Maurice Aalders, Paul Baas, Fiona A. Stewart, Outcome of mTHPC Mediated Photodynamic Therapy is Primarily Determined by the Vascular Response., Photochemistry and Photobiology 81 (2005) 1161-1167 31.ESTELLE MAUGAIN, SIARHEI SASNOUSKI, VLADIMIR ZORIN, JEAN-LOUIS MERLIN, FRANCOIS GUILLEMIN, LINA BEZDETNAYA, Foscan-based photodynamic treatment in vivo: Correlation between efficacy and Foscan accumulation in tumor, plasma and leukocytes., Oncology Reports 12 (2004) 639-645 32.Ruth VEENHUIZEN, Hugo OPPELAAR, Marjan RUEVEKAMP, Jan SCHELLENS, Otilia DALESIO, Fiona STEWART, DOES TUMOUR UPTAKE OF FOSCAN DETERMINE PDT EFFICACY?, Int. J. Cancer 73 (1997) 236-239 33.P Cramers, M Ruevekamp, H Oppelaar, O Dalesio, P Baas, FA Stewart, Foscan uptake and tissue distribution in relation to photodynamic efficacy., British Journal of Cancer 88 (2003) 283-290 34.S Andrejevic Blant, TM Glanzmann, J-P Ballini, G Wagnie`res, H van den Bergh, P Monnier, Uptake and localisation of mTHPC (Foscan) and its14C-labelled form in normal and tumour tissues of the hamster squamous cell carcinoma model: a comparative study., British Journal of Cancer 87 (2002) 1470-1478 35.Vladislava O. MELNIKOVA, Lina N. BEZDETNAYA, Daniel BRAULT, Alexander Y. POTAPENKO, Franc¸ois GUILLEMIN, ENHANCEMENT OF META-TETRAHYDROXYPHENYLCHLORIN-SENSITIZED PHOTODYNAMIC TREATMENT ON HUMAN TUMOR XENOGRAFTS USING A WATER-SOLUBLE VITAMIN E ANALOGUE, TROLOX., Int. J. Cancer 88 (2000) 798-803 36.H-B Ris, T Krueger, A Giger, CK Lim, JCM Stewart, U Althaus, HJ Altermatt, Photodynamic therapy with mTHPC and polyethylene glycol-derived mTHPC: a comparative study on human tumour xenografts., British Journal of Cancer 79 (1999) 1061-1066 37.Veenhuizen RB, Ruevekamp MC, Oppelaar H, Helmerhorst TJM, Kenemans P, Stewart FA, Foscan-mediated photodynamic therapy for a peritoneal-cancer model: Drug distribution and efficacy studies., Int. J. Cancer 73 (1997) 230-235 38.Brett W. Engbrecht, Chandrakala Menon, Alexander V. Kachur, Stephen M. Hahn, and Douglas L. Fraker, Photofrin-mediated Photodynamic Therapy Induces Vascular Occlusion and Apoptosis in a Human Sarcoma Xenograft Model., Cancer Research 59 (1999) 4334-4342 39.Bourdon O, Laville I, Carrez D, Croisy A, Fedel P, Kasselouri A, Prognon P, Legrand P, Blais J, Biodistribution of meta-tetra( hydroxyphenyl)chlorin incorporated into surface-modified nanocapsules in tumor-bearing mice, PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 9 (2002) 709-714 40.Maeda N, Takeuchi Y, Takada M, Sadzuka Y, Namba Y, Oku N, Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome, JOURNAL OF CONTROLLED RELEASE, 100 (2004) 41-52 41.Zalipsky S, Hansen CB, Oaks JM, Allen TM, Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes, JOURNAL OF PHARMACEUTICAL SCIENCES, 85 (1996) 133-137 42.GOMER CJ, FERRARIO A, TISSUE DISTRIBUTION AND PHOTOSENSITIZING PROPERTIES OF MONO-L-ASPARTYL CHLORIN-E6 IN A MOUSE-TUMOR MODEL, CANCER RESEARCH, 50 (1990) 3985-3990 43.Tran N, Krueger T, Pan Y, Yan H, Cheng C, Altermatt HJ, Ballini JP, Borle F, Ris HB, Andrejevic-Blant S, Correlation of photodynamic activity and fluorescence signaling for free and pegylated mTHPC in mesothelioma xenografts, LASERS IN SURGERY AND MEDICINE, 39 (2007) 237-244 44.Ferrario A, Chantrain CF, von Tiehl K, Buckley S, Rucker N, Shalinsky DR, Shimada H, DeClerck YA, Gomer CJ, The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model, CANCER RESEARCH, 64 (2004) 2328-2332 45.Ferrario A, von Tiehl K, Wong S, Luna M, Gomer CJ, Cycloxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response, CANCER RESEARCH, 62 (2002) 3956-3961 46.Konan-Kouakou YN, Boch R, Gurny R, Allemann E, In vitro and in vivo activities of verteporfin-loaded nanoparticles, JOURNAL OF CONTROLLED RELEASE, 103 (2005) 83-91
Part 2:Photodynamic therapy alone or with anti-angiogenic therapy for colorectal cancer 1.Kristan A. Keyes, Larry Mann, Karen Cox, Patti Treadway, Philip Iversen, Yun-Fei Chen, Beverly A. Teicher, Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology, Cancer Chemother Pharmacol 51 (2003) 321–327 2.Young D. Jung, Syed A. Ahmad, Yoshito Akagi, Yutaka Takahashi, Wenbiao Liu, Niels Reinmuth, Raymond M. Shaheen, Fan Fan1 and Lee M. Ellis, Role of the tumor microenvironment in mediating response to anti-angiogenic therapy, Cancer and Metastasis Reviews 19 (2000) 147–157 3.Rakesh K. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science 307 (2005) 58-62 4.K. Jin Kim, Bing Li, Jane Winer, Mark Armanini, Nancy Gillett, Heidi S. Phillips, Napoleone Ferrara, Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vitro, Nature 362 (1993) 841-844 5.Christopher J. Sweeney, Kathy D. Miller, George W. Sledge Jr, Resistance in the anti-angiogenic era: nay-saying or a word of caution?, TRENDS in Molecular Medicine 9 (2003) 24-29 6.Hans-Peter Gerber, Napoleone Ferrara, Pharmacology and Pharmacodynamics of Bevacizumab as Monotherapy or in Combination with Cytotoxic Therapy in Preclinical Studies, Cancer Research 65 (2005) 671-680 7.Maria Luisa Veronese, Peter J. O’Dwyer, Monoclonal antibodies in the treatment of colorectal cancer, European Journal of Cancer 40 (2004) 1292–1301 8.NAPOLEONE FERRARA, Vascular Endothelial Growth Factor as a Target for Anticancer Therapy, The Oncologist 9 (2004) 2-10 9.Nishan H. Fernando, Herbert I. Hurwitz, Inhibition of Vascular Endothelial Growth Factor in the Treatment of Colorectal Cancer, Seminars in Oncology 30 (2003) 39-50 10.Hong Jo Choi, Moon Soo Hyun, Ghap Joong Jung, Sang Soon Kim, Sook Hee Hong, Tumor Angiogenesis as a Prognostic Predictor in Colorectal Carcinoma with Special Reference to Mode of Metastasis and Recurrence, Oncology 55 (1998) 575–581 11.Tina Cascone, Teresa Troiani, Maria Pia Morelli, Cesare Gridelli, Fortunato Ciardiello, Antiangiogenic drugs in non-small cell lung cancer treatment, Current Opinion in Oncology 18 (2006) 151–155 12.Yaning Wang, David Fei, Martin Vanderlaan, An Song, Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro, Angiogenesis 7 (2004) 335-345 13.Ferrario A, Gomer CJ, Avastin enhances photodynamic therapy treatment of Kaposi''s sarcoma in a mouse tumor model, J. Environ. Pathol. Toxicol. Oncol. 25 (2006) 251-259 14.Alan Sandler, M.D., Robert Gray, Ph.D., Michael C. Perry, M.D., Julie Brahmer, M.D., Joan H. Schiller, M.D., Afshin Dowlati, M.D., Rogerio Lilenbaum, M.D., and David H. Johnson, M.D. Paclitaxel–Carboplatin Alone or with Bevacizumab for Non–Small-Cell Lung Cancer, New England Journal of Medicine, 355 (2007) 2542-2550 15.Charles J. Gomer, PhD, Angela Ferrario, PhD, Marian Luna, BS, Natalie Rucker, BS, Sam Wong, BS, Photodynamic Therapy: Combined Modality Approaches Targeting the Tumor Microenvironment, Lasers in Surgery and Medicine 38 (2006) 516–521 16.Nicolas Solban, PHD, Imran Rizvi, MS, Tayyaba Hasan, PhD, Targeted Photodynamic Therapy, Lasers in Surgery and Medicine 38 (2006) 522-531 17.SO Gollnick, SS Evans, H Baumann, B Owczarczak, P Maier, L Vaughan, WC Wang, E Unger, BW Henderson, Role of cytokines in photodynamic therapy-induced local and systemic inflammation, British Journal of Cancer 88 (2003) 1772-1779 18.Angela Ferrario, Anita M. Fisher, Natalie Rucker, Charles J. Gomer, Celecoxib and NS-398 Enhance Photodynamic Therapy by Increasing In vitro Apoptosis and Decreasing In vivo Inflammatory and Angiogenic Factors, Cancer Research 65 (2005) 9473-9478 19.Y.AKITA, K.KOZAKI, A.NAKAGAWA, T.SAITO, S.ITO, Y.TAMADA, S.FUJIWARA, N.NISHIKAWA, K.UCHIDA, K.YOSHIKAWA, T.NOGUCHI, O.MIYAISHI, K.SHIMOZATO, S.SAGA, Y.MATSUMOTO, Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity, British Journal of Dermatology 151 (2004) 472–480 20.Marcin Makowski, Tomasz Grzela, Justyna Niderla, Maciej Łazarczyk, Paweł Mro´z, Maciej Kopec´, Magdalena Legat, Katarzyna Strusin´ ska, Katarzyna Koziak, Dominika Nowis, Piotr Mro´wka, Maria Wa˛sik, Marek Jako´bisiak, Jakub Gołab, Inhibition of Cyclooxygenase-2 Indirectly Potentiates Antitumor Effects of Photodynamic Therapy in Mice, Clinical Cancer Research 9 (2003) 5417-5422 21.Angela Ferrario, Karl F. von Tiehl, Natalie Rucker, Margaret A. Schwarz, Parkash S. Gill, Charles J. Gomer, Antiangiogenic Treatment Enhances Photodynamic Therapy Responsiveness in a Mouse Mammary Carcinoma, Cancer Research 60 (2000) 4066-4069 22.Angela Ferrario, Christophe F. Chantrain, Karl von Tiehl, Sue Buckley, Natalie Rucker, David R. Shalinsky, Hiroyuki Shimada, Yves A. DeClerck, Charles J. Gomer, The Matrix Metalloproteinase Inhibitor Prinomastat Enhances Photodynamic Therapy Responsiveness in a Mouse Tumor Model, Cancer Research 64 (2004) 2328-2332 23.Angela Ferrario, Karl von Tiehl, Sam Wong, Marian Luna, Charles J. Gomer, Cyclooxygenase-2 Inhibitor Treatment Enhances Photodynamic Therapy-mediated Tumor Response, Cancer Research 62 (2002) 3956-3961
|