跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾麗靜
研究生(外文):Li-Ching Tseng
論文名稱:實驗室氣櫃氣動力效應與污染物洩漏評估及性能改良技術之開發
論文名稱(外文):Aerodynamics and Assessment of Contaminant Leakage and Development of Improvement Technique of Laboratory Fume Hoods
指導教授:陳志傑陳志傑引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:257
中文關鍵詞:實驗室氣櫃面速度氣櫃性能流場可視化追蹤氣體量測氣動學
外文關鍵詞:Laboratory fume hoodFace velocityPerformanceCross- DraftFlow visualizationTracer gas techniqueVortexWake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:595
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗室氣櫃係屬一可調整開口大小的五面密閉似的局部排氣裝置,以捕捉、限制及排除氣櫃內產生的危害燻煙等。近十幾年來,諸多研究建議,由於實驗室氣櫃的幾何、設備參數、抽氣率、側風等等因素,以傳統測量面速度方法來決定氣櫃之性能,並不足以有效防範有害化學燻煙等流入實驗室人員之呼吸區域。
本研究建立一標準實驗操作條件,進行傳統化學性氣櫃研究,以面速度及其變異性量測及流場可視化方法,結合追蹤氣體量測探究氣櫃於靜態(不受外界干擾氣流影響)與動態(櫃門迅速開關及有側風情況),探討氣櫃內部及氣櫃介面之流場結構影響與污染源洩漏之關聯性。綜合9間大學9間實驗室現場氣櫃及3種不同廠商設計型式之氣櫃,實驗結果發現污染源洩漏相當嚴重的位置,集中於櫃門側邊及門檻附近區域及操作人員身體產生尾流區域附近,與所觀察到的大循環式迴流區具重要之關聯性,推論污染源洩漏機制係由於氣流通過櫃門側邊及門檻附近區域所產生的速度擾動及與時間息息相關的非平衡性的渦流之交互影響,藉由動量及能量交換,引起相當不穩定且混亂的擾流型態,污染源透過此種擾流擴散方式運動比僅透過分子擴散或布朗分子擴散具重要意義。另以假人模擬氣櫃操作人員真實狀況,由於氣流經過假人身體的邊界層形成的尾流區,易使得污染源以迴流方式流入假人呼吸區域,且與氣櫃內部與介面的污染源進行氣體混合交換,而形成複雜紊流三維結構流場,明顯增加污染源暴露濃度,此上述兩種效應對於評估氣櫃操作人員真實污染源暴露狀況,具相當重要意義。研究結論評估實驗室氣櫃性能的良劣,應全面性評估氣櫃櫃面每一局部位置的濃度分佈情形結合假人尾流效應,結合探究氣櫃之流場分佈,對於實驗室操作人員暴露風險具重要意義。以僅量測模擬操作人員的假人呼吸區域污染源濃度並不是一評估氣櫃整體暴露風險的最佳方式。本研究開發改良式測試方法結合局部區域與假人身體效應作為評估氣櫃整體暴露風險之建議方法。
櫃門迅速開關及有側流時,大量的紊流渦漩伴隨噴流式氣流明顯的將櫃內污染物攜出至外界。此紊流式混合延伸及擴張大量的旋轉式紊流渦漩的範圍及強度,於瞬間即引起嚴重櫃內污染源之洩露。此流場觀察結果與追蹤氣體測試呈現一致的關聯性。
本研究參酌上述結果以氣動力學觀點檢視氣櫃的設計對性能的影響,並發展新式改良型噴流阻截式氣櫃,利用於氣櫃內部與氣櫃外面介面增設新鮮空氣供氣機制,引用吹吸式技術,包圍及阻斷非屬理想的傳統型氣櫃於櫃門側邊及門檻附近區域及操作人員身體尾流區所產生的渦流,就不同的吹吸速度決定流場模態分區,做為包覆渦流式氣櫃操作最佳化的參考指標。在此種操作模態下,原來傳統性氣櫃由於複雜、不穩定的紊流型態形成三維複雜的大迴流區域,已明顯被包覆,大幅度改善傳統型氣櫃於流體力學上之缺點。
A laboratory fume hood is a three-sided enclosure with an adjustable front opening. It is designed to capture, contain and exhaust the fumes generated inside its enclosure. Traditionally, the ability of the laboratory fume hood to capture and exhaust contaminants is often equated to its face velocity. However, many reports suggest that maintaining a specific face velocity does not guarantee that a fume hood will contain harmful chemical fumes. Actually, no correlation between face velocity and containment was observed. Important parameters, such as geometry of the hood, interior equipment parameters, airflow rates, air currents, frequent sash opening and closing, cross-drafts, affect containment ability of laboratory fume hoods.
In order to speculate the physical mechanisms of the contaminant dispersion and leakage during the ventilation process through a laboratory fume hood, the complicated three-dimensional flow patterns and the real-time tracer gas leakage are studied via the laser-assisted flow visualization method and the standard/special gas sampling technique, respectively. The results of the experiment establish the fact that the large-scale vortex structures occurring near the perimeter edge could induce strong turbulence and therefore enhance dispersion of the recirculated contaminant. In the vicinity of the near-wake region of the manikin, large recirculation zones and wavy structures are also identified. These phenomena are in agreement with the high degree of contaminant leakage. The recirculation zone could be attributed to the complex interaction of the various large vortices that consume large amounts of mechanical energy and create fluctuations in velocities. The interaction between time-dependent nonequilibrium vortex and velocity fluctuations is an essential mechanism to create and maintain chaotic and unstable turbulence, this interaction may easily draw contaminants from elsewhere into the vortices. This effect of turbulent dispersion on the contaminant transport strongly relies on the mixing behavior of the complex flow and the concentration of diffusing species that is much greater than the molecular diffusion.
It is argued that an effective method for evaluating the laboratory fume hoods should be based on the aerodynamic features and multi-point leakage detections instead of the breathing-zone sampling alone. A modified test method combined with the region-by-region approach at the presence of the manikin showed substantially different results of the containment.
Large-scale turbulent eddies accompanied with the jet-like currents obviously bring large amount of in-hood smoke out to the atmosphere during the sash movement and the walk-bys. The turbulent mixing extends the size and the strength of the large-scale eddy circulations, and predominantly contributes to the mechanism that causes the severe spread of contaminant leakage in few seconds. The tracer gas tests show consistent containment results with the flow visualization findings. The temporally evolving large-scale turbulent eddies induced by the sash movement and the walk-bys cause substantially high contaminant leakage to the environment and the breathing zone of the operator.
By employing the concept of push-pull isolation, a vortex-isolated type of fume hood is constructed and studied by using the laser-light-sheet-assisted smoke flow visualization method. Results of the flow patterns reveal that the up-blow type fume hood has a much improved flow patterns when compared with the traditional one. No global recirculations are found in the hood. No apparent traces of the in-hood released smoke particles are entrained out of the hood and go into these local recirculation bubbles. Diagnostics of the flow patterns and the experiments of the tracer-gas concentration measurements present extra-ordinarily satisfactory results.
誌謝 1
中文摘要 2
英文摘要 3
目錄 5
符號索引 8
表圖索引 9
第一章 緒論 18
1.1 研究動機 19
1.2 文獻回顧 19
1.2.1 引起氣櫃性能不良之因素 19
1.2.2 實驗室氣櫃測試方法 21
1.3 研究目的 23
第二章 實驗設備、儀器與方法 24
2.1 實驗設備 24
2.1.1 傳統氣櫃 24
2.1.2 噴流阻截式氣櫃 24
2.1.3 抽氣機 25
2.1.4 煙霧微粒產生系統與微粒特性 25
2.1.5 六氟化硫釋放器 26
2.1.6 雷射光頁產生器 27
2.1.7 數位相機 27
2.1.8 數位攝影機 28
2.1.9 往復式調速平板移動機構 28
2.2 量測儀器 28
2.2.1 文氏管流量計 28
2.2.2 壓力轉換器 28
2.2.3 風速轉換器 29
2.2.4 浮子式流量計 29
2.2.5 Malvern粒徑測量儀 29
2.2.6 MIRAN濃度測量儀 29
2.3 儀器校準方法 30
2.4 實驗方法 31
第三章 面速度及變異性分佈研究 34
3.1 實驗方法與步驟 34
3.2 測量結果分析 34
3.3 結果與討論 35
第四章 流場結構與污染源洩漏之關連性 37
4.1 實驗方法 37
4.1.1 流場可視化 37
4.1.2 追蹤氣體量測 39
4.2 結果與討論 40
4.2.1 氣櫃幾何位置對於流場結構與污染源洩漏之影響 40
4.2.2 假人身體對於流場結構與污染源洩漏之影響 42
4.2.3 不同位置釋放污染源對於流場結構與污染源洩漏之影響 43
4.2.4 因櫃門迅速關開對於流場結構與污染源洩漏之影響 45
4.2.5 側流對於流場結構與污染源洩漏之影響 46
第五章 暴露評估方法之開發 49
5.1 國際氣櫃測試方法之驗證 49
5.1.1 ANSI/ASHRAE 110-1995追蹤氣體測試方法之驗證 49
5.1.2 prEN 14175-2003測試方法之驗證 50
5.2 現場測試之驗證 51
5.3 結合尾流效應與局部區域測試方法之開發 52
第六章 噴流阻截式氣櫃技術的發展 54
6.1 設計概念
6.2 櫃內靜止時的流場與洩漏 54
55
6.2.1 流場結構 56
6.2.2 洩漏特性 58
6.2.3 流場特徵模態 59
6.2.4 特性區域 61
6.3櫃門開啟時的流場與洩漏 62
6.4側流干擾時的流場與洩漏 62
第七章 結論與建議 64
7.1 結論 64
7.2 建議 65
參考文獻 67
1.Durst, F. and Pereira, J. C.: Experimental and numerical investigations of the performance of fume cupboards. Building and Environment, 59:153-164, 1991.
2.Durst, F. and Pereira, J. C. F.: Numerical simulation and optimization of the aerodynamics flow field inside fume cupboards. Journal of Wind Engineering and Industrial Aerodynamics. 40:127-145, 1992.
3.Hu, P., Ingham, D.B. and Wen, X.: Effect of the location of the exhaust duct, an exterior obstruction and handle on the air flow inside and around a fume cupboard. Ann. Occup. Hyg. 40(2):127-144, 1996.
4.Hu, P., Ingham, D.B. and Wen, X.: Effect of baffles and a louvered bypass on the airflow and the convective patterns of contaminant inside a fume hood. Am. Ind. Hyg. Assoc. J. 59:303-312, 1998.
5.Nicholson, G. P., Clark, R. P. and De Calcina-Goff M. L.: Computational fluid dynamics as a method for assessing fume cupboard performance. Ann. Occup. Hyg. 44(3):203-217, 2000.
6.Lan, N. S. and Viswanathan, S.: Numerical simulation of airflow around a variable volume/constant face velocity fume cupboard. AIHA Journal. 62:303-312, 2001.
7.Kirkpatrick, A. T. and Reither, R.: Numerical simulation of laboratory fume hood airflow performance. Career and Technical Education, ASHRAE Transactions: Symposia, 104:999-1011, 1998.
8.American National Standards Institute, Inc. (ANSI): American National Standard-Laboratory Ventilation (ANSI/AIHA Z9.5-2003). Fairfax, Virginia: ANSI, 2003.
9.Ivany, R. E., First, M. W., and Diberardinis, L. J.: A new method for quantitative, in-use testing of laboratory fume hoods. Am. Ind. Hyg. Assoc. J. 50(5):275-280, 1989.
10.Fletcher, B. and Johnson, A. E.: Containment testing of fume cupboards-I, methods. Ann. Occup. Hyg. 36(3):239-252, 1992.
11.Fletcher, B. and Johnson, A. E.: Containment testing of fume cupboards-II, test room measurements. Ann. Occup. Hyg. 36(4):395-405, 1992.
12.Saunders, T.: Laboratory fume hoods, A user’s manual. John Wiley & Sons, Inc, Professional, Reference and Trade Group. New York, pp.56, 1993.
13.First, Melvin W. “Laboratory chemical hoods: a historical perspective”, AIHA Journal, 64:251-259, 2003.
14.Volin, C. E., Joao, R. V., Reiman, J. S., Party, E. and Gershey, E. L.: Fume hood performance: face velocity variability inconsistent air volume systems. Appl. Occup. Environ. Hyg. 13(9):656-662, 1998.
15.Maupins, K. and Hitchings, D. T.: Reducing employee exposure potential using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a diagnostic tool. Am. Ind. Hyg. Assoc. J. 59:133-138, 1998.
16.Ekberg, L. E. and Melin, J.: Required response time for variable air volume fume hood controller. Ann. Occup. Hyg. 44(2):143-150, 2000.
17.Chessin, Saul J. and Johnston, James D.: Thermal loading as a causal factor in exceeding the 0.1 ppm laboratory fume hood control level. Applied Occupational and Environmental Hygiene, 17(7):512-518, 2002.
18.Harnett, Peter B.: Empirical data and modeling of a flammable spill in a chemical fume hood do not support the need for fire suppression within the chemical fume hood ductwork. Chemical Health & Safety, 45:187-190, 2003.
19.Hitchings, Dale T.: Laboratory fume hood and exhaust fan penthouse exposure risk analysis using the ANSI/ASHRAE 110-1995 and other tracer gas methods. ASHRAE Transactions; 103, Career and Technical Education, 1997.
20.Ryder, Martyn: Improving laboratory containment by a factor of ten, Pharmaceutical Technology Europe, 14:2, 2002.
21.Rydock, James P.: Tracer performance testing of installed fume hoods: one European perspective, Chemical Health & Safety, 56:198-202, 2002.
22.Fuller, F H. and Etchells, A.W.: The rating of laboratory hood performance, ASHRAE Journal, October, 1979.
23.Caplan, K. J. and Knutson, G. W.: Laboratory fume hoods: Influence of room air supply, Am. Ind. Hyg. Assoc. J., 43:738-746, 1978.
24.Altemose, B. A., Flynn, M. R., and Sprankle, J.: Application of a tracer gas challenge with a human subject to investigate factor affecting the performance of laboratory fume hoods, Am. Ind. Hyg. Assoc., 59:321-327, 1998.
25.Joao, R. V., Party, E., and Gershey, E. L.: Fume hood performance: Using a bypass in variable air volume systems, Appl. Occup. Environ. Hyg., 13(10):708-712, 1998.
26.Greenley, P. L., Billings, C. E., DiBerardinis, L. J., Edwards, R. W., and Barkley, W. E.: Containment testing of laboratory hoods in the as-used condition, Appl. Occup. Environ. Hyg., 15(2):209-216, 2000.
27.Ivany, Raymond, Melvin, E., First, W. and Louis, J.,: Laboratory fume hoods: influence of room air supply, 184(2):398-402, 1978.
28.Kim, Taehyeung and Flynn, Michael R.: The effect of contaminant source momentum on a worker’s breathing zone concentration in a uniform freestream, Am. Ind. Hyg. Assoc. J. 53(2):307-311, 1992.
29.Wunder, Jack: Quantitative fume hood evaluation for operator safety, Chemical Health & Safety, 56(3);402-405, 2000.
30.Welling, Irma et al.: Contaminant dispersion in the vicinity of a worker in a uniform velocity field, Ann. Occup. Hyg, 44(3):219-225, 2000.
31.Johnson A. E., Fletcher, B. and Saunders C. J.: Air movement around a worker in a low-speed flow field. Ann. Occup. Hyg. 40:57-64, 1996.
32.Hitchings, Dale T. and Maupins, Karen: Using the ASHRAE 110 test as a TQM tool to improve laboratory fume hood performance, Career and Technical Education, ASHRAE Transactions, 14(103), part 2, 1997.
33.Geoffrey, C. Bell et al.: ASHRAE 110 tracer gas containment report- SDSU Berkeley Hood; Labconco Prototype, Alpha Version –Rev. 2”, San Diego Gas and Electric Company, U.S. Dept. of Energy, 2002.
34.Marzal, F., Gonzalez, E., Minana A. and Baeza, A. Determination and interpretation of total and transversal linear efficiencies in push-pull ventilation systems for open surface tanks. Ann. Occup. Hyg. 46:629-635, 2002.
35.Marzal, F., Gonzalez, E., Minana A. and Baeza, A. Methodologies for determining capture efficiencies in surface treatment tanks. Am. Ind. Hyg. Assoc. J. 64:604-608, 2003.
36.Marzal, F., Gonzalez, E., Minana A. and Baeza, A. Visualization of airflows in push-pull ventilation systems applied to surface treatment tanks. Am. Ind. Hyg. Assoc. J. 64:455-460, 2003.
37.American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE): Method of Testing Performance of Laboratory Fume Hoods. (ANSI/ASHRAE Standard 110-1995). Atlanta, GA: ASHRAE, 1995.
38.National Fire Protection Association (NFPA 45-2000): Standard on Fire Protection for Laboratories Using Chemicals. 2000.
39.British Standard Institution (BS 7258-1994): Laboratory Fume Cupboards, British Standard, London, 1994.
40.DIN 12924-1994: Laboratory Furniture; Fume Cupboards, General Purpose Fume Cupboards; Types, Main Dimensions, Requirements and Testing, Beuth Verlag GmbH, 1994.
41.European Committee for Standardization (EN 14175-2002): Fume Cupboards, 2002.
42.Australian/New Zealand Standard (AS/NZS 2243.8:2001): Safety in Laboratories Part 8: Fume Cupboards, 2001.
43.Invent UK Ltd. (Invernt-UK): Specifications handbook for fume cupboard performance tests: procedures, requirements and grading, Revision 5, February, 2004.
44.Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 290-357.
45.Kim, T. and Flynn, M. R.: The effect of contaminant source momentum on a worker’s breathing zone concentration in a uniform freestream. Am. Ind. Hyg. Assoc. J. 53(12):757-766, 1992.
46.Flynn, M. R. and Ljungqvist, B.: A review of wake effects on worker exposure. Ann. Occup. Hyg. 39(2):211-221, 1995.
47.Huang, R. F., Chen, J. L., Chen, Y. K., Chen, C. C., Yeh, W. Y., and Chen, C. W., “The capture envelope of a flanged circular hood in cross drafts,” AIHA Journal, 62:199-207, 2001.
48.Huang, R. F., Sir, S. Y., Chen, Y. K., Yeh, W. Y., Chen, C. W., and Chen, C. C., “Capture envelopes of rectangular hoods in cross drafts,” AIHA Journal, 62:563-571, 2001.
49.Huang, R. F., Liu, G. S., Chen, Y. K., Yeh, W. Y., Chen, C. W. and Chen, C. C., “Effects of flange size on dividing streamline of exterior hoods in cross drafts,” Journal of Occupational and Environmental Hygiene, 1(5):283-288, 2004.
50.Huang, R. F., Liu, G. S., Lin, S. Y., Chen, Y. K., Wang, S. C., Peng, C. Y., Yeh, W. Y., Chen, C. W., and Chang, C. P., “Development and Characterization of a Wake-Controlled Exterior Hood,” Journal of Occupational and Environmental Hygiene, 1(12):283-288, 2004.
51.Huang, R. F., Lin, S. Y., Jan, S. Y., Hsieh, R. H., Chen, Y. K., Chen, C. W., Yeh, W. Y., Chang, C. P., Shih, T. S., and Chen, C. C., “Aerodynamic Characteristics and Design Guidelines of Push-Pull Ventilation Systems ,” Annals of Occupational Hygiene, 49(1):1-15, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top