跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭劭蕙
研究生(外文):Shao-Hui Cheng
論文名稱:評估四種不同血液製劑對牛角膜上皮細胞上皮化功能的影響
論文名稱(外文):Evaluation of Epitheliotrophic Capacity of Four Different Blood Derivatives on Bovine Corneal Epithelial cells
指導教授:林中天陳偉勵
指導教授(外文):Chung-Tien LinWei-Li Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:65
中文關鍵詞:上皮化能力人類血清胎牛血清冷凍血漿臍帶血清
外文關鍵詞:Epitheliotrophic capacityHuman serumFetal bovine serum (FBS)Frozen plasmaUmbilical cord serum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
實驗目的:
犬隻、馬以及人類的自體血清已經成功且廣泛地使用在嚴重的角膜疾病以及促進角膜傷口癒合。人類的臍帶血清在臨床上被認為可以有效地治療乾眼症與持續性的角膜上皮缺損。相對於人類血清與臍帶血清而言,冷凍血漿是一個取得方便,又有良好品質管理的血液製劑,但目前尚未有使用在臨床上的報告。本實驗目的為比較臍帶血清、冷凍血漿與人類血清促進角膜上皮傷口癒合、細胞增生和細胞移行的效果,評估在臨床上這些血液製劑是否可以取代自體血清,或擁有比自體血清更佳的效果;胎牛血清常規地使用在各實驗中,協助試管內 (in vitro) 培養的細胞生長,但近年來因為狂牛病的肆虐,讓此血液製劑在使用上有安全上的疑慮,因此尋找替代的血液製劑變得格外重要,所以本實驗比較了使用這四種血液製劑培養的牛角膜上皮細胞之細胞形態與繁殖效果,進而評估這些血液製劑用來培養細胞的可能性。

材料與方法:
使用的細胞為試管內培養的第二代牛角膜上皮細胞。細胞培養液是用DMEM/F-12稀釋成10%的胎牛血清、人類血清、臍帶血清與冷凍血漿。實驗主要分為傷口癒合試驗、細胞增生試驗、細胞移行試驗、細胞形態的觀察以及血液製劑中生長因子與細胞外基質含量的測定。傷口癒合試驗是在單層的牛角膜上皮細胞上,製造機械性的傷口,比較這四種不同的血液製劑,造成角膜上皮傷口癒合的速度;細胞增生試驗是利用可評估活細胞數的MTS assay,來測試以不同血液製劑培養的牛角膜上皮細胞,經過1、2、3天的培養後,細胞數增加的情形。細胞移行試驗則是利用Boyden chamber來評估這四種血液製劑促進細胞穿過固定直徑孔洞的能力。細胞形態學的觀察是使用這四種血液製劑,培養牛角膜細胞四天後,利用倒立顯微鏡觀察且紀錄比較。最後利用ELISA套組,測定各種人類來源的血液製劑中上皮生長因子 (EGF)、轉化生長因子β1 (TGF-β1) 和fibronectin的濃度。
結果:
在傷口癒合試驗中,胎牛血清使傷口癒合最為快速,其次為三種人類來源的血液製劑;在細胞增生試驗中,胎牛血清造成的細胞增生效果最為顯著、人類血清與臍帶血清次之,冷凍血漿效果最差;在細胞移行試驗中,胎牛血清促進細胞移行的效果最佳、人類血清次之、臍帶血清和冷凍血漿較差;細胞學形態的觀察方面,四種血液製劑培養的牛角膜上皮細胞,在倒立顯微鏡下形態相似。至於三種人類來源血液製劑生長因子的濃度,以臍帶血清最多,人類血清次之,冷凍血漿最少;而細胞外基質fibronectin的含量則是冷凍血漿最多、人類血清次之、臍帶血清最少。

結論:
臍帶血清在傷口癒合試驗、細胞增生試驗、細胞移行試驗以及細胞形態上的表現,都可與人類血清相比,且臨床上已經使用在人類乾眼症和持續性角膜上皮缺損的病患身上,未來可嘗試使用在犬隻或馬身上。冷凍血漿在促進細胞增生和移行的效果稍差,但因取得方便,未來可嘗試使用本實驗的製備方式,輔助治療角膜上皮缺損的病患。至於在培養細胞上,這三種人類來源的血液製劑,在牛角膜上皮細胞上皮化能力的表現,雖沒有像胎牛血清那樣突出,但仍舊可以促進細胞的增生和移行,且維持一定的形態,若要培養未來使用在人類眼睛上的細胞,或許也可考慮這三種人類來源的血液製劑。
PURPOSE: Human serum eye drops have been successfully used in treatment of severe ocular surface disorders and enhancement of corneal wound healing. Umbilical cord serum is effective in treatment of dry eye and persistent corneal epithelial defects. Fresh frozen plasma has not yet been tested for use as eye drops in patients, although it is easily available as quality-controlled products from blood banks. Fresh frozen plasma or umbilical cord serum could be used for substituting human serum when the source of human serum lacks. The use of fetal bovine serum (FBS) in the culture medium has been a major concern worldwide because of bovine spongiform encephalitis (BSE). The use of other human source blood-derived products to replace FBS in the culture process would help. We compared these four blood products by investigating the epitheliotrophic capacity in an in vitro model of bovine epithelial cell monolayer.
MATERIALS AND METHODS:Primary cultured bovine corneal epithelial cells were used to investigate wound healing, cell proliferation and migration by means of scratch corneal wound evaluation, MTS assay and Boyden chamber migration assay in response to human serum, umbilical cord serum, fresh frozen plasma and FBS. The concentrations of EGF, TGF-β1, and fibronectin in human serum, umbilical cord serum and fresh frozen plasma were evaluated by ELISA kits.
RESULTS: The effect of promoting corneal epithelial wound healing of FBS was better than three other human sourced blood products. Cell proliferation and migration were best enhanced by FBS, followed by umbilical cord serum and human serum, and were worst in fresh frozen plasma. Growth factor (EGF and TGF-β1) concentrations were significantly higher in umbilical cord serum than in human serum and were lowest in frozen plasma. The concentration of fibronectin in frozen plasma was significantly higher than in human serum and was lowest in umbilical cord serum.
CONCLUSIONS: Umbilical cord serum and fresh frozen plasma may possess potential for substitution of human serum to treatment ocular surface disease and enhance corneal wound healing. Although the enhancement of epitheliotrophic capacity in human-sourced blood products was not as excellent as FBS, these three blood products could also promote proliferation and migration of corneal epithelial cells. These products could be useful materials in cultivating cells for clinical use.
口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 v
第一章 序言 1
第二章 文獻探討 4
第一節 角膜上皮細胞與其生理之簡介 4
第二節 角膜上皮傷口癒合機制 5
第三節 影響角膜上皮細胞傷口癒合的生長因子和細胞外基質 6
3-1生長因子 6
3-2細胞外基質 10
第四節 淚液的介紹 10
4-1. 淚液對角膜的重要性 10
4-2. 淚液取代物 11
第五節 各種使用於角膜之血液製劑 12
第三章 實驗材料與方法 14
第一節 實驗材料 14
ㄧ、牛角膜上皮細胞之初代培養 14
第二節 細胞上皮化能力的測試 16
ㄧ、傷口癒合測試 16
二、細胞增生測試 17
三、細胞移行測試 18
第三節 血液製劑中成分測試 18
ㄧ、人類上皮生長因子測試 19
二、人類轉化上皮因子β1測試 19
三、人類Fibronectin測試 19
第四節ITS對牛角膜上皮細胞的影響 20
第五節 統計方法 20
第四章 結果 21
第一節 傷口癒合測試 21
第二節 細胞增生測試 21
第三節 細胞移行試驗 22
第四節 細胞形態學下的觀察 22
第五節 各血液製劑內生長因子與細胞外基質成分的比較 23
第六節 不同濃度ITS配合不同濃度血液製劑對牛角膜上皮細胞的影響 23

第五章 討論 25
第一節 四種血液製劑於角膜上皮細胞的表現 25
第二節 血液製劑中各成分對角膜上皮細胞的影響 27
第三節 四種血液製劑在臨床上的應用 32
第四節ITS對血液製劑的加強效果 34
結論 35
參考文獻 36
圖目錄 42
表目錄 43
Ang, L. P., D. T. Tan, R. W. Beuerman, and R. M. Lavker. 2004. Development of a conjunctival epithelial equivalent with improved proliferative properties using a multistep serum-free culture system. Invest Ophthalmol Vis Sci 45:1789-1795.
Ang, L. P., D. T. Tan, C. J. Seah, and R. W. Beuerman. 2005. The use of human serum in supporting the in vitro and in vivo proliferation of human conjunctival epithelial cells. Br J Ophthalmol 89:748-752.
Brown, S. M., and J. C. Bradley. 2005. The effect of autologous serum eye drops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol 140:565; author reply 565-566.
Buttke, T. M., J. A. McCubrey, and T. C. Owen. 1993. Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 157:233-240.
Carrington, L. M., J. Albon, I. Anderson, C. Kamma, and M. Boulton. 2006. Differential regulation of key stages in early corneal wound healing by TGF-beta isoforms and their inhibitors. Invest Ophthalmol Vis Sci 47:1886-1894.
Chifflet, S., J. A. Hernandez, and S. Grasso. 2005. A possible role for membrane depolarization in epithelial wound healing. Am J Physiol Cell Physiol 288:C1420-1430.
Collin, H. B., J. A. Anderson, N. R. Richard, and P. S. Binder. 1995. In vitro model for corneal wound healing; organ-cultured human corneas. Curr Eye Res 14:331-339.
Esquenazi, S., J. He, H. E. Bazan, and N. G. Bazan. 2005. Use of autologous serum in corneal epithelial defects post-lamellar surgery. Cornea 24:992-997.
Fox, R. I., R. Chan, J. B. Michelson, J. B. Belmont, and P. E. Michelson. 1984. Beneficial effect of artificial tears made with autologous serum in patients with keratoconjunctivitis sicca. Arthritis Rheum 27:459-461.
Geerling, G., S. Maclennan, and D. Hartwig. 2004. Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 88:1467-1474.
Gieni, R. S., Y. Li, and K. T. HayGlass. 1995. Comparison of [3H]thymidine incorporation with MTT- and MTS-based bioassays for human and murine IL-2 and IL-4 analysis. Tetrazolium assays provide markedly enhanced sensitivity. J Immunol Methods 187:85-93.
Gomes, J. A., R. Amankwah, A. Powell-Richards, and H. S. Dua. 2004. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br J Ophthalmol 88:821-825.
Goto, E., S. Shimmura, J. Shimazaki, and K. Tsubota. 2001. Treatment of superior limbic keratoconjunctivitis by application of autologous serum. Cornea 20:807-810.
Grant, M. B., P. T. Khaw, G. S. Schultz, J. L. Adams, and R. W. Shimizu. 1992. Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-beta on corneal cell chemotaxis. Invest Ophthalmol Vis Sci 33:3292-3301.
Grierson, I., L. Heathcote, P. Hiscott, P. Hogg, M. Briggs, and S. Hagan. 2000. Hepatocyte growth factor/scatter factor in the eye. Prog Retin Eye Res 19:779-802.
Haber, M., Z. Cao, N. Panjwani, D. Bedenice, W. W. Li, and P. J. Provost. 2003. Effects of growth factors (EGF, PDGF-BB and TGF-beta 1) on cultured equine epithelial cells and keratocytes: implications for wound healing. Vet Ophthalmol 6:211-217.
Hartwig, D., S. Harloff, L. Liu, P. Schlenke, T. Wedel, and G. Geerling. 2004. Epitheliotrophic capacity of a growth factor preparation produced from platelet concentrates on corneal epithelial cells: a potential agent for the treatment of ocular surface defects? Transfusion 44:1724-1731.
Hartwig, D., P. Herminghaus, T. Wedel, L. Liu, P. Schlenke, L. Dibbelt, and G. Geerling. 2005. Topical treatment of ocular surface defects: comparison of the epitheliotrophic capacity of fresh frozen plasma and serum on corneal epithelial cells in an in vitro cell culture model. Transfus Med 15:107-113.
Hongo, M., M. Itoi, N. Yamaguchi, and J. Imanishi. 1992. Distribution of epidermal growth factor (EGF) receptors in rabbit corneal epithelial cells, keratocytes and endothelial cells, and the changes induced by transforming growth factor-beta 1. Exp Eye Res 54:9-16.
Imanishi, J., K. Kamiyama, I. Iguchi, M. Kita, C. Sotozono, and S. Kinoshita. 2000. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 19:113-129.
Jumblatt, M. M., and A. H. Neufeld. 1986. A tissue culture assay of corneal epithelial wound closure. Invest Ophthalmol Vis Sci 27:8-13.
Kitazawa, T., S. Kinoshita, K. Fujita, K. Araki, H. Watanabe, Y. Ohashi, and R. Manabe. 1990. The mechanism of accelerated corneal epithelial healing by human epidermal growth factor. Invest Ophthalmol Vis Sci 31:1773-1778.
Klenkler, B., and H. Sheardown. 2004. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology. Exp Eye Res 79:677-688.
Koizumi, N., T. Inatomi, T. Suzuki, C. Sotozono, and S. Kinoshita. 2001. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 108:1569-1574.
Kruse, F. E., and S. C. Tseng. 1993. Serum differentially modulates the clonal growth and differentiation of cultured limbal and corneal epithelium. Invest Ophthalmol Vis Sci 34:2976-2989.
Lagnado, R., A. J. King, F. Donald, and H. S. Dua. 2004. A protocol for low contamination risk of autologous serum drops in the management of ocular surface disorders. Br J Ophthalmol 88:464-465.
Liu, L., D. Hartwig, S. Harloff, P. Herminghaus, T. Wedel, and G. Geerling. 2005. An optimised protocol for the production of autologous serum eyedrops. Graefes Arch Clin Exp Ophthalmol 243:706-714.
Liu, L., D. Hartwig, S. Harloff, P. Herminghaus, T. Wedel, K. Kasper, and G. Geerling. 2006. Corneal epitheliotrophic capacity of three different blood-derived preparations. Invest Ophthalmol Vis Sci 47:2438-2444.
Lu, L., P. S. Reinach, and W. W. Kao. 2001. Corneal epithelial wound healing. Exp Biol Med (Maywood) 226:653-664.
Matsumoto, Y., M. Dogru, E. Goto, Y. Ohashi, T. Kojima, R. Ishida, and K. Tsubota. 2004. Autologous serum application in the treatment of neurotrophic keratopathy. Ophthalmology 111:1115-1120.
McBain, V. A., J. V. Forrester, and C. D. McCaig. 2003. HGF, MAPK, and a small physiological electric field interact during corneal epithelial cell migration. Invest Ophthalmol Vis Sci 44:540-547.
McDonnell, P., D. Schanzlin, and R. NA. 1988. Immunoglobulin deposition in the corneal after application of autologous serum. Arch Ophthalmol 106:1423-1425.
Moore, P. A. 2003. Diagnosis and management of chronic corneal epithelial defects (indolent corneal ulcerations). Clinical Techniques in Small Animal Practice 18:168-177.
Munro, E. 2001. Advances in ocular therapeutics in dogs and cats. In Practice 23:316-327.
Nakamura, M., H. Mishima, T. Nishida, and T. Otori. 1994. Binding of hyaluronan to plasma fibronectin increases the attachment of corneal epithelial cells to a fibronectin matrix. J Cell Physiol 159:415-422.
Nakamura, M., and T. Nishida. 1999a. Differential effects of epidermal growth factor and interleukin 6 on corneal epithelial cells and vascular endothelial cells. Cornea 18:452-458.
Nakamura, M., and T. Nishida. 1999b. Synergistic effects of hyaluronan and fibronectin on epithelial migration in rabbit cornea in vitro. Cornea 18:686-692.
Nakamura, M., and T. Nishida. 2003. Potentiation by cyclic AMP of the stimulatory effect of epidermal growth factor on corneal epithelial migration. Cornea 22:355-358.
Nakamura, T., L. P. Ang, H. Rigby, E. Sekiyama, T. Inatomi, C. Sotozono, N. J. Fullwood, and S. Kinoshita. 2006a. The use of autologous serum in the development of corneal and oral epithelial equivalents in patients with Stevens-Johnson syndrome. Invest Ophthalmol Vis Sci 47:909-916.
Nakamura, T., T. Inatomi, C. Sotozono, L. P. Ang, N. Koizumi, N. Yokoi, and S. Kinoshita. 2006b. Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1765-1772.
Nakamura, Y., C. Sotozono, and S. Kinoshita. 2001. The epidermal growth factor receptor (EGFR): role in corneal wound healing and homeostasis. Exp Eye Res 72:511-517.
Nishimura, T., S. Toda, T. Mitsumoto, S. Oono, and H. Sugihara. 1998. Effects of hepatocyte growth factor, transforming growth factor-beta1 and epidermal growth factor on bovine corneal epithelial cells under epithelial-keratocyte interaction in reconstruction culture. Exp Eye Res 66:105-116.
Noda-Tsuruya, T., N. Asano-Kato, I. Toda, and K. Tsubota. 2006. Autologous serum eye drops for dry eye after LASIK. J Refract Surg 22:61-66.
Ohashi, Y., M. Motokura, Y. Kinoshita, T. Mano, H. Watanabe, S. Kinoshita, R. Manabe, K. Oshiden, and C. Yanaihara. 1989. Presence of epidermal growth factor in human tears. Invest Ophthalmol Vis Sci 30:1879-1882.
Ollivier, F. J., D. E. Brooks, M. E. Kallgerg, A. M. Komaromy, M. E. Lassaline, S. E. Andrew, K. N. Gelatt, G. R. Stevens, T. D. Blalock, G. B. van Setten, and G. S. Schultz. 2003. Evaluation of various compounds to inhibit activity of matrix metalloproteinases in the tear film of horses with ulcerative keratitis. Am J Vet Res 64:1081-1087.
Pellegrini, G., C. E. Traverso, A. T. Franzi, M. Zingirian, R. Cancedda, and M. De Luca. 1997. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990-993.
Pfister, R. R. 1992. Clinical measures to promote corneal epithelial healing. Acta Ophthalmol Suppl:73-83.
Poon, A. C., G. Geerling, J. K. Dart, G. E. Fraenkel, and J. T. Daniels. 2001. Autologous serum eyedrops for dry eyes and epithelial defects: clinical and in vitro toxicity studies. Br J Ophthalmol 85:1188-1197.
Rama, P., S. Bonini, A. Lambiase, O. Golisano, P. Paterna, M. De Luca, and G. Pellegrini. 2001. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478-1485.
Rheinwald, J. G., and H. Green. 1975. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331-343.
Schwab, I. R., M. Reyes, and R. R. Isseroff. 2000. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421-426.
Shanley, L. J., C. D. McCaig, J. V. Forrester, and M. Zhao. 2004. Insulin, not leptin, promotes in vitro cell migration to heal monolayer wounds in human corneal epithelium. Invest Ophthalmol Vis Sci 45:1088-1094.
Shimmura, S., R. Ueno, Y. Matsumoto, E. Goto, A. Higuchi, J. Shimazaki, and K. Tsubota. 2003. Albumin as a tear supplement in the treatment of severe dry eye. Br J Ophthalmol 87:1279-1283.
Tsai, R. J., L. M. Li, and J. K. Chen. 2000. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86-93.
Tsubota, K., E. Goto, H. Fujita, M. Ono, H. Inoue, I. Saito, and S. Shimmura. 1999a. Treatment of dry eye by autologous serum application in Sjogren''s syndrome. Br J Ophthalmol 83:390-395.
Tsubota, K., E. Goto, S. Shimmura, and J. Shimazaki. 1999b. Treatment of persistent corneal epithelial defect by autologous serum application. Ophthalmology 106:1984-1989.
Tsubota, K., and A. Higuchi. Serum application for the treatment of ocular surface disorders.113-122.
Tsubota, K., Y. Satake, M. Ohyama, I. Toda, Y. Takano, M. Ono, N. Shinozaki, and J. Shimazaki. 1996. Surgical reconstruction of the ocular surface in advanced ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Am J Ophthalmol 122:38-52.
Vajpayee, R. B., N. Mukerji, R. Tandon, N. Sharma, R. M. Pandey, N. R. Biswas, N. Malhotra, and S. A. Melki. 2003. Evaluation of umbilical cord serum therapy for persistent corneal epithelial defects. Br J Ophthalmol 87:1312-1316.
van Setten, G. B., L. Viinikka, T. Tervo, K. Pesonen, A. Tarkkanen, and J. Perheentupa. 1989. Epidermal growth factor is a constant component of normal human tear fluid. Graefes Arch Clin Exp Ophthalmol 227:184-187.
Wilson, S. E., R. R. Mohan, R. R. Mohan, R. Ambrosio, Jr., J. Hong, and J. Lee. 2001. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 20:625-637.
Yoon, K. C., H. Heo, I. Y. Jeong, and Y. G. Park. 2005. Therapeutic effect of umbilical cord serum eyedrops for persistent corneal epithelial defect. Korean J Ophthalmol 19:174-178.
Yoon, K. C., S. K. Im, Y. G. Park, Y. D. Jung, S. Y. Yang, and J. Choi. 2006. Application of umbilical cord serum eyedrops for the treatment of dry eye syndrome. Cornea 25:268-272.
Young, A. L., A. C. Cheng, H. K. Ng, L. L. Cheng, G. Y. Leung, and D. S. Lam. 2004. The use of autologous serum tears in persistent corneal epithelial defects. Eye 18:609-614.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文