跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張琳巧
研究生(外文):Lin-Chau Chang
論文名稱:三黃瀉心湯、固醇類荷爾蒙及維生素E之毛細管電泳分析
論文名稱(外文):The Analysis of San-huang-xie-xin-tang, Steroid Hormones, and Tocopherols by Capillary Electrophoresis
指導教授:李水盛張煥宗張煥宗引用關係郭錦樺郭錦樺引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:171
中文關鍵詞:毛細管電泳膠束電動層析法微乳劑電動層析法三黃瀉心湯固醇類荷爾蒙維生素E
外文關鍵詞:capillary electrophoresismicellar electrokinetic chromatographymicroemulsion electrokinetic chromatographySan-huang-xie-xin-tangsteroid hormonestocopherols
相關次數:
  • 被引用被引用:1
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解應用毛細管電泳於藥物分析之可行性,本研究以膠束電動層析法及微乳劑電動層析法兩種模式為探討之核心。中草藥萃取物的混合物,因成分複雜,須要高解析度之分析方法加以分離。本研究以膠束電動層析法,分析常見中藥材黃連、黃芩及大黃之13種指標成分的混合物。結果發現,有機修飾劑乙腈之添加百分比,會造成解析度、峰形和遷移窗域顯著的改變。藉由調整緩衝溶液酸鹼值、界面活性劑之濃度及乙腈之添加百分比,13種指標成分得以成功分離。其緩衝溶液之組成為,在pH值7.3下,3 mM di-sodium tetraborate、10 mM sodium dihydrogen phosphate、50 mM sodium deoxycholate與30%乙腈之混合溶液。應用此方法分析含上述三種藥材之三黃瀉心湯時,可以定量萃取物中所含之八種成分,此方法可作為分析其他混合此三種藥材之起始條件。
由於固醇類荷爾蒙之分析,對於診斷、預後及藥物品質管制等皆具重要性,因此,本研究利用含陽離子界面活性劑cetyltrimethylammonium bromide (CTAB) 之膠束電動層析法,同時分析分屬雄性素、雌性素、助孕素及糖皮質素之固醇類荷爾蒙,以期增進對分析此類物質時所可能產生的各種狀況之了解。結果顯示,重要影響因子包含CTAB之濃度、有機修飾劑之種類和比例及樣品間質等。其中,尤以有機修飾劑之影響最為顯著,其於緩衝溶液中影響解析度,而於樣品間質中則影響峰形。在施加電壓-25 kV下,以含有pH 9.0之100 mM Tris-boric acid buffer、40 mM CTAB 及 20% 2-propanol之混合溶液,得以成功分離cortisone、hydrocortisone、estriol、testosterone、estrone、progesterone及estradiol。
對於分析結構相似度高、且厭水性高之各種型式的tocopherols,本研究採用峰效率及溶解能力高之微乳劑電動層析法進行分析,並探討緩衝溶液系統、環糊精的種類與濃度、溫度及樣品間質等,對於分析效果之影響。在-26 kV、25 °C下,利用含有4% (w/w) sodium dodecyl sulfate (SDS)、6.6% (w/w) 1-butanol、0.8% (w/w) n-octane、20% (w/w) 2-propanol、68.6% (w/w) phosphate (25 mM, pH 2.5) 及25 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) 之微乳劑系統,得以成功分離α-、γ-、δ-tocopherol、α-tocopherol acetate及抗氧化劑butylated hydroxytoluene (BHT)。由以上之結果得知,在適當之條件控制下,具高解析度、高分析效能及低樣品與溶媒消耗量之毛細管電泳,確實具有應用於藥物分析之價值和前景。
The aim of the present study was to elucidate the feasibility of capillary electrophoresis, with focus on micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) in pharmaceutical analysis. The components of the mixture of Chinese herbal extracts were usually complex, which necessitated the use of analytical methods with high resolution power. Therefore, MEKC was applied to analyze a mixture of 13 bioactive components of common Chinese herbs including Coptidis Rhizoma, Scutellariae Radix, and Rhei Rhizoma. Acetonitrile percentage was found to significantly influence the resolution, peak shape, and elution window. By adjusting buffer pH, the concentration of surfactant, and acetonitrile proportion, 13 bioactive components could be successfully separated at pH 7.3 using a buffer mixture of 3 mM di-sodium tetraborate, 10 mM sodium dihydrogen phosphate, and 50 mM sodium deoxycholate with 30% (v/v) acetonitrile. Eight components of San-huang-xie-xin-tang, which contained all three herbs, could be determined using the developed method. The separation condition could serve as a starting point to evaluate other related formulae containing these herbs.
Since the analysis of steroid hormones was important for diagnosis, prognosis, and quality control of pharmaceutical products, MEKC with a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used to simultaneously analyze the steroid hormones which belonged to androgens, estrogens, progestins, and glucocorticoids. The aim of the present study was to expand the understanding of the separation phenomena which would be encountered regarding the analyses of steroid hormones. Influential parameters included the concentration of CTAB, type and proportion of organic modifiers, and sample matrix. Organic modifier was the most prominent parameter, since it affected the resolution through the presence in separation buffer and the peak shape though the existence in sample matrix. Successful separation of cortisone, hydrocortisone, estriol, testosterone, estrone, progesterone, and estradiol was achieved at -25 kV using 100 mM Tris-boric acid buffer (pH 9.0) with 40 mM CTAB and 20% 2-propanol.
MEEKC, claimed to attain high peak efficiency with great solubilization power, was also utilized in the present study to separate different forms of tocopherols with highly structural similarities and high hydrophobicities. We investigated the effects of various parameters, such as buffer system, type and concentration of cyclodextrins, temperature, and sample matrix on the separation of tocopherols. By using a buffer mixture of 4% (w/w) sodium dodecyl sulfate (SDS), 6.6% (w/w) 1-butanol, 0.8% (w/w) n-octane, 20% (w/w) 2-propanol, 68.6% (w/w) phosphate (25 mM, pH 2.5), and 25 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), the separation of α-, γ- and δ-tocopherol, α-tocopherol acetate, as well as the antioxidant butylated hydroxytoluene (BHT) at -26 kV, 25 °C was succeeded. The results suggested that under proper control of separation conditions, capillary electrophoresis, due to its high resolution power, high separation efficiency, and low sample and solvent consumption, was indeed of great values to be applied in pharmaceutical analysis.
口試委員會審定書.........................................i
誌謝.....................................................ii
中文摘要................................................iii
英文摘要..................................................v
目錄...................................................viii
圖目錄.................................................xiv
表目錄................................................xviii
第一章 序論
壹、毛細管電泳的歷史與文獻回顧..............................................................................1
貳、毛細管電泳的分析原理及概要..............................................................................4
2.1. 毛細管電泳裝置簡介....................................................................................4
2.2. 電泳原理概要................................................................................................4
2.3. 電滲流 (electroosmotic flow, EOF) .............................................................5
2.4. 評估分離效果之常用公式............................................................................6
2.4.1. 峰效率.................................................................................................6
2.4.2. 解析度.................................................................................................6
參、與本論文相關之電泳技術
3.1 膠束電動層析法 (micellar electrokinetic chromatography, MEKC) 簡介..7
3.1.1. 膠束電動層析法之分離原理...........................7
3.1.2. 膠束系統...........................................7
3.1.3. 膠束電動層析法之最佳化.............................9
3.1.3.1. 分離效率 (efficiency) ..........................10
3.1.3.2. 選擇性 (selectivity) ...........................10
3.1.3.3. 分配作用 (partitioning) ........................11
3.1.3.4. 遷移窗域 (migration window) ....................12
3.2. 微乳劑電動層析法 (microemulsion electrokinetic chromatography, MEEKC) 簡介........................................................................13
3.2.1. 微乳劑及微乳劑電動層析法之發展緣起、概要及其應用............13
3.2.2. 微乳劑系統.......................................................................................14
3.2.3. 微乳劑電動層析法...........................................................................15
3.2.4. 影響微乳劑電動層析法分離結果之因素.......................................15
3.2.4.1. 界面活性劑之種類及濃度....................................................15
3.2.4.2. 油相種類................................................................................17
3.2.4.3. 有機修飾劑之加入................................................................17
3.2.4.4. 輔助界面活性劑之種類及濃度............................................18
3.2.4.5. 緩衝溶液種類及濃度............................................................18
3.2.4.6. 緩衝溶液系統酸鹼度 (pH值) .............................................18
3.2.4.7. 緩衝溶液添加物....................................................................19
3.2.4.8. 樣品間質及注射時間............................................................19
3.2.4.9. 微乳劑製備步驟之影響........................................................20
3.2.4.10. 溫度效應..............................................................................20
3.3. 微乳劑電動層析法與膠束電動層析法之比較..........................................21
肆、研究動機................................................................................................................23
伍、參考文獻................................................................................................................24
第二章 以膠束電動層析法分析含有黃連生物鹼 (coptis alkaloids)、黃芩黃酮類 (scute flavonoids) 及大黃 (rhubarb) 蒽醌 (anthraquinones) 與雙蒽酮類 (bianthrones) 之研究
壹、序論與研究目的....................................................................................................49
貳、實驗部分................................................................................................................51
2.1. 儀器..............................................................................................................51
2.2. 藥品與試劑..................................................................................................51
2.3. 標準品溶液之製備......................................................................................51
2.4. 檢品溶液之製備..........................................................................................52
2.5. 毛細管電泳系統..........................................................................................52
2.6. 毛細管之處理..............................................................................................53
2.7. 分析方法之確效..........................................................................................53
2.7.1. 精密度 (precision) ...........................................................................53
2.7.2. 線性 (linearity) ................................................................................54
2.7.3. 偵測極限 (limit of detection, LOD) ...............................................54
2.7.4. 準確度 (accuracy) ...........................................................................54
參、結果與討論............................................................................................................55
3.1. 分析方法之建立..........................................................................................55
3.2. 分析參數之探討..........................................................................................56
3.2.1. 緩衝溶液酸鹼值...............................................................................56
3.2.2. 界面活性劑sodium deoxycholate之濃度........................................56
3.2.3. 添加有機修飾劑乙腈之百分比.......................................................57
3.3. 最佳分析條件..............................................................................................58
3.4. 分析方法之確效..........................................................................................58
3.4.1. 精密度 (precision) ...........................................................................58
3.4.2. 線性 (linearity) ................................................................................59
3.4.3. 偵測極限 (limit of detection, LOD)................................................59
3.4.4. 準確度 (accuracy) ...........................................................................59
3.5. 三黃瀉心湯之定量......................................................................................60
肆、結論.......................................................................................................................61
伍、參考文獻................................................................................................................62
第三章 以膠束電動層析法配合紫外光吸收或雷射誘導螢光偵測法分析固醇類荷爾蒙
壹、序論與研究目的....................................................................................................88
貳、實驗部分................................................................................................................90
2.1. 儀器..............................................................................................................90
2.1.1. 紫外光吸收偵測...............................................................................90
2.1.2. 雷射誘導螢光偵測...........................................................................90
2.2. 藥品與試劑..................................................................................................90
2.3. 標準品溶液之製備......................................................................................91
2.4. 檢品溶液之製備..........................................................................................91
2.4.1. Trisequens錠劑..................................................................................91
2.4.2. 黃體素注射液 (progesterone injection)...........................................91
2.5. 最佳化緩衝溶液之製備..............................................................................92
2.6. 毛細管電泳系統..........................................................................................92
2.6.1. 紫外光吸收偵測...............................................................................92
2.6.2. 雷射誘導螢光偵測...........................................................................92
2.7. 毛細管之處理..............................................................................................92
2.8. 計算電泳淌度之公式..................................................................................93
2.9. 偵測極限 (limit of detection, LOD).........................................................93
2.10. 利用標準添加法定量................................................................................94
2.11. 含量信賴區間之評估................................................................................94
參、結果與討論............................................................................................................96
3.1. 分析方法之建立..........................................................................................96
3.2. 分析參數之探討..........................................................................................97
3.2.1. 有機修飾劑種類之影響...................................................................97
3.2.2. 添加異丙醇比例之影響...................................................................98
3.2.3. CTAB濃度之影響.............................................................................98
3.2.4. 樣品間質中甲醇比例之影響...........................................................99
3.3. 最佳化緩衝溶液……………………….....................…………………….100
3.4. 遷移順序之探討................................................................……………......101
3.5. 分析物的偵測極限 (limit of detection, LOD)...................................102
3.6. 檢品溶液的分析........................................................................................102
3.6.1. 市售含有estradiol hemihydrate錠劑之分析.................................102
3.6.2. 市售含有progesterone注射劑之分析...........................................103
肆、結論......................................................................................................................105
伍、參考文獻..............................................................................................................106
第四章 以環糊精修飾之微乳劑電動層析法分離α-、γ-、δ-tocopherol及α-tocopherol acetate
壹、序論與研究目的..................................................................................................132
貳、實驗部分..............................................................................................................134
2.1. 儀器............................................................................................................134
2.2. 藥品與試劑................................................................................................134
2.3. 標準品溶液之製備....................................................................................135
2.4. 檢品溶液之製備........................................................................................135
2.5. 最佳化緩衝溶液之製備............................................................................135
2.6. 毛細管電泳系統........................................................................................135
2.7. 毛細管之處理............................................................................................136
2.8. 分析方法之確效........................................................................................137
2.8.1. 精密度 (precision)..........................................................................137
2.8.2. 線性 (linearity)...............................................................................137
2.8.3. 偵測極限 (limit of detection, LOD)..............................................138
2.8.4. 定量極限 (limit of quantitation, LOQ) .........................................138
2.8.5. 準確度 (accuracy) .........................................................................138
參、結果與討論..........................................................................................................139
3.1. 分析方法之建立........................................................................................139
3.2. 分析參數之探討........................................................................................140
3.2.1. DM-β-CD濃度之影響.....................................................................140
3.2.2. 溫度之影響.....................................................................................141
3.2.3. 樣品間質之影響.............................................................................141
3.3. 分離機制之探討........................................................................................141
3.4. 分析方法之確效........................................................................................143
3.4.1. 精密度 (precision).............................................................................143
3.4.2. 線性 (linearity)...............................................................................143
3.4.3. 偵測極限 (limit of detection, LOD)..............................................143
3.4.4. 定量極限 (limit of quantitation, LOQ)..........................................144
3.4.5. 準確度 (accuracy) .........................................................................144
3.5. 實際樣品之檢測........................................................................................144
肆、結論........................................................................................................................145
伍、參考文獻................................................................................................................146
第五章 總結..............................................................................................................169
附錄............................................................................................................................171





圖目錄
Figure 1-1. The instrumentation setup of capillary electrophoresis....................44
Figure 1-2. Electrical double layer.......................................................................44
Figure 1-3. Schematic representation of MEKC..................................................45
Figure 1-4. Basic structure of the amino acid-based polymeric surfactants.........45
Figure 1-5. Schematic diagram of water-soluble polyelectrolyte complex between polyacrylic acid and alkyltrimethylammonium salts....................................................................................................46
Figure 1-6. Pictorial representation of the combination of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) to form a bicelle................................................................................................46
Figure 1-7. Schematic of surfactant coated oil droplet........................................47
Figure 1-8. Principles of MEEKC.......................................................................47
Figure 2-1. Structures of 13 compounds analyzed and tetrandrine (I.S.)...................................................................................................69
Figure 2-2. Effect of buffer pH on migration time of the analytes…...............70
Figure 2-3. Effect of SDC concentration on migration time of the analytes..............................................................................................71
Figure 2-4. Stereoscopic views of the helix found in the rubidium deoxycholate (RbDC) crystal structure viewed (a) along and (b) perpendicular to the helical axis…............................................................................72
Figure 2-5. Effect of ACN percentage on migration time of the analytes..............................................................................................73
Figure 2-6. Electropherogram of 13 analytes under optimized separation conditions.......................................................................................74
Figure 2-7. Electropherogram of San-huang-xie-xin-tang extract under optimized separation conditions.........................................................................75
Figure 2-8. Calibration curve of coptisine by linear regression analysis..........76
Figure 2-9. Calibration curve of berberine by linear regression analysis.........76
Figure 2-10. Calibration curve of palmatine by linear regression analysis........77
Figure 2-11. Calibration curve of baicalin by linear regression analysis...........77
Figure 2-12. Calibration curve of sennoside B by linear regression analysis.....78
Figure 2-13. Calibration curve of sennoside A by linear regression analysis…....78
Figure 2-14. Calibration curve of emodin by linear regression analysis............79
Figure 2-15. Calibration curve of rhein by linear regression analysis................79
Figure 3-1. Structures of seven analyzed steroids...........................................116
Figure 3-2. Influence of organic modifiers on separation of seven steroid hormones.........................................................................................117
Figure 3-3. Influence of 2-propanol on separation of seven steroid hormones.........................................................................................118
Figure 3-4. Influence of CTAB on separation of seven steroid hormones...................................................................................…..119
Figure 3-5. Influence of methanol (60-100%) in sample matrix on separation of seven steroid hormones................................................................120
Figure 3-6. Influence of PEO on separation of seven steroid hormones.........................................................................................121
Figure 3-7. Influence of median- and long-chain alcohols on separation of seven steroid hormones.............................................................................122
Figure 3-8. (a) Electropherogram of estradiol hemihydrate tablet using estriol as an internal standard; (b) Electropherogram of progesterone injection using testosterone as an internal standard........................................123
Figure 3-9. Standard addition curve of estradiol by linear regression analysis............................................................................................124
Figure 3-10. Standard addition curve of progesterone by linear regression analysis............................................................................................124
Figure 3-11. Influence of CTAB (0-80 mM) in sample matrix on separation of seven steroid hormones.................................................................125
Figure 4-1. Structures of different forms of tocopherols used, vitamin A palmitate, and BHT.......................................................................152
Figure 4-2. Effect of DM-β-CD on migration time of tocopherols and BHT.................................................................................................153
Figure 4-3. Effect of temperature on migration time of tocopherols and BHT.................................................................................................154
Figure 4-4. Electropherogram of four tocopherols studied and BHT under the optimized condition.........................................................................155
Figure 4-5. Electropherograms of vitamin A palmitate, four tocopherols, and BHT under optimized conditions in the (a) presence and (b) absence of DM-β-CD... ...............................................................156
Figure 4-6. Calibration curve of α-tocopherol by linear regression analysis….157
Figure 4-7. Calibration curve of γ-tocopherol by linear regression analysis….157
Figure 4-8. Calibration curve of δ-tocopherol by linear regression analysis….158
Figure 4-9. Electropherograms of vitamin E supplement (a) with and (b) without the addition of α-tocopherol acetate and BHT under optimized conditions........................................................................................159

表目錄
Table 1-1. Polymeric micelles for achiral separations and their target analytes..............................................................................................48
Table 2-1. Migration times (min) of 13 analytes............................................80
Table 2-2. Repeatability and reproducibility of migration times for 13 analytes.............................................................................................83
Table 2-3. Peak-area-ratios of 8 analytes.........................................................84
Table 2-4. Repeatability and reproducibility of peak-area-ratios for 8 analytes..............................................................................................85
Table 2-5. Linear relationships between peak-area-ratios and concentrations (µg/ml) for 8 analytes.....................................................................86
Table 2-6. Limits of detection of 13 analytes at detection wavelength of 270 nm...................................................................................................86
Table 2-7. Intra-assay (n=3) and inter-assay (n=9) determinations of 8 components in spiked San-huang-xie-xin-tang..............................87
Table 2-8. Contents of 8 components in San-huang-xie-xin-tang (n=3)…........87
Table 3-1. Influence of organic modifiers on the apparent mobility of electroosmotic flow and the absolute values of the net mobilities of the analytes...................................................................................126
Table 3-2. Influence of 2-propanol on the apparent mobility of electroosmotic flow and the absolute values of the net mobilities of the analytes............................................................................................127
Table 3-3. Influence of CTAB on the apparent mobility of electroosmotic flow and the absolute values of the net mobilities of the analytes............................................................................................128
Table 3-4. Comparison of limits of detection using UV absorption (at wavelength of 224 nm) and LIF detection (at excitation wavelength of 266 nm) for the tested steroids....................................................129
Table 3-5. Results of standard addition analysis of two real samples..............130
Table 3-6. Data used for the calculation of the standard addition curve of estradiol........................................................................................130
Table 3-7. Data used for the calculation of the standard addition curve of progesterone.................................................................................131
Table 4-1. Effect of cyclodextrins on the separation of a sample mixture containing four tocopherols and BHT.........................................160
Table 4-2. Effect of sample matrixes (A-D) on peak efficiency of four tocopherols and BHT.......................................................................161
Table 4-3. Mobilities (cm2V-1s-1) of vitamin A palmitate, four tocopherols, and BHT under optimized conditions in the presence of DM-β-CD.........................................................................................162
Table 4-4. Mobilities (cm2V-1s-1) of vitamin A palmitate, four tocopherols, and BHT under optimized conditions in the absence of DM-β-CD.........................................................................................162
Table 4-5. Migration times (min) of three tocopherols at three different concentration levels.........................................................................163
Table 4-6. Peak-area-ratios of three tocopherols at three different concentration levels.................................................................................................165
Table 4-7. Intra-assay precision (n=3) and intermediate precision (n=9) of migration times (tm) and peak-area-ratios and accuracy (n=9) data of α-, γ-, and δ-tocopherol at three concentration levels..............167
Table 4-8. Linear relationships of tocopherols between peak-area-ratios and concentrations (µg/ml)….............................................................167
Table 4-9. Limits of detection (LOD) and limits of quantitation (LOQ) of tocopherols at wavelength of 205 nm..............................................168
Table 4-10. Comparison of label claim with the estimation of the amount of each tocopherol determined.....................................................................168
第一章
1. R. P. Oda, J. P. Landers, in J. P. Landers (Editor), Handbook of Capillary Electrophoresis, CRC Press, Boca Raton, FL, 1997, p. 2.

2. P. Camilleri, in P. Camilleri (Editor), Capillary Electrophoresis: Theory and Practice, CRC Press, Boca Raton, FL, 1998, p. 2.

3. A. Tiselius, A new apparatus for electrophoretic analysis of colloidal mixtures, Trans. Faraday Soc., 33, 524-531 (1937).

4. R. Consden, A. H. Gordon, A. J. P. Martin, Qualitative analysis of proteins: a partition chromatographic method using paper, Biochem. J., 38, 224-232 (1944).

5. O. Smithies, Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults, Biochem. J., 61, 629-641 (1955).

6. S. Hjertén, Agarose as an anticonvection agent in zone electrophoresis, Biochim. Biophys. Acta, 53, 514-517 (1961).

7. S. Raymond, L. Weintraub, Acrylamide gel as a supporting medium for zone electrophoresis, Science, 130, 711 (1959).

8. S. Hjertén, High performance electrophoresis, Chromatogr. Rev., 9, 122-139 (1967).

9. F. M. Everaerts, J. L. Beckers, Th. P. E. M. Verheggen. Isotachophoresis: Theory, Instrumentation, and Applications, Elsevier, Amsterdam, 1976, p. 224.

10. R. Virtanen, Zone electrophoresis in a narrow-bore tube employing potentiometric detection, Acta Polytechnica Scand., 123, 1-67 (1974).

11. F. E. P. Mikkers, F. M. Everaerts, Th. P. E. M. Verheggen, High-performance zone electrophoresis, J. Chromatogr., 169, 11-20 (1979).

12. J. W. Jorgenson, K. D. Lukacs, High resolution separations based on electrophoresis and electroosmosis, J. Chromatogr., 218, 209-216 (1981).

13. J. W. Jorgenson, K. D. Lukacs, Zone electrophoresis in open-tubular glass capillaries, Anal. Chem., 53, 1298-1302 (1981).
14. J. W. Jorgenson, K. D. Lukacs, Capillary zone electrophoresis, Science, 222, 266-272 (1983).

15. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem., 56, 111-113 (1984).

16. S. Terabe, K. Otsuka, T. Ando, Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem., 57, 834-841 (1985).

17. H. Swerdlow, R. Gesteland, Capillary gel electrophoresis for rapid, high resolution DNA sequencing, Nucleic Acids Res., 18, 1415-1419 (1990).

18. R. J. Zagursky, R. M. McCormick, DNA sequencing separations in capillary gels on a modified commercial DNA sequencing instrument, Bio Techniques, 9, 74-79 (1990).

19. S. Thangadurai, The human genome project: the role of analytical chemists, Anal. Sci., 20, 595-601 (2004).

20. R. Kuhn, S. Hoffstetter-Kuhn, Capillary Electrophoresis: Principles and Practice, Springer-Verlag, Berlin, 1993, p. 22.

21. K. Otsuka, S. Terabe, T. Ando, Electrokinetic chromatography with micellar solutions. Retention behavior and separation of chlorinated phenols, J. Chromatogr., 348, 39-47 (1985).

22. R. Kuhn, S. Hoffstetter-Kuhn, Capillary Electrophoresis: Principles and Practice, Springer-Verlag, Berlin, 1993, p. 194.

23. M. G. Khaledi, in M. G. Khaledi (Editor), High-Performance Capillary Electrophoresis: Theory, Techniques, and Applications, John Wiley & Sons Inc., New York, NY, 1998, p. 79.

24. M. G. Khaledi, Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: overview and perspective, J. Chromatogr. A, 780, 3-40 (1997).

25. T. J. Pappas, M. Gayton-Ely, L. A. Holland, Recent advances in miceller electrokinetic chromatography, Electrophoresis, 26, 719-734 (2005).
26. X. Liu, L. Ma, Y. -T. Lu, Determination of phosphoamino acids by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection, Anal. Chim. Acta, 512, 297–304 (2004).

27. M. Kulp, M. Kaljurand, On-line monitoring of enzymatic conversion of adenosine triphosphate to adenosine diphosphate by micellar electrokinetic chromatography, J. Chromatogr. A, 1032, 305–312 (2004).

28. S. Takeda , A. Omura , K. Chayama, H. Tsuji, K. Fukushi, M. Yamane, S. -I. Wakida, S. Tsubota, S. Terabe, Separation and on-line concentration of bisphenol A and alkylphenols by micellar electrokinetic chromatography with cationic surfactant, J. Chromatogr. A, 979, 425-429 (2002).

29. H. -J. Shen, C. -H. Lin, Comparison of the use of anionic and cationic surfactants for the separation of steroids based on MEKC and sweeping-MEKC modes, Electrophoresis, 27, 1255-1262 (2006).

30. J. -B. Kim, J. P. Quirino, K. Otsuka, S. Terabe, On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants, J. Chromatogr. A, 916, 123-130 (2001).

31. B. Maichel, E. Kenndler, Recent innovation in capillary electrokinetic chromatography with replaceable charged pseudostationary phases or additives, Electrophoresis, 21, 3160-3173 (2000).

32. C. P. Palmer, H. M. McNair, Novel pseudostationary phase for micellar electrokinetic capillary chromatography, J. Microcol. Sep., 4, 509-512 (1992).

33. C. P. Palmer, M. Y. Khaled, H. M. McNair, A monomolecular pseudostationary phase for micellar electrokinetic capillary chromatography, J. High. Resol. Chromatogr., 15, 756-762 (1992).

34. J. Wang, I. M. Warner, Chiral separations using micellar electrokinetic capillary chromatography and a polymerized chiral micelle, Anal. Chem., 66, 3773-3776 (1994).

35. A. V. Pirogov, A. V. Shpak, O. A. Shpigun, Application of polyelectrolyte complexes as novel pseudo-stationary phases in MEKC, Anal. Bioanal. Chem., 375, 1199-1203 (2003).
36. A. V. Shpak, A. V. Pirogov, O. A. Shpigun, Micellar electrokinetic chromatography with polyelectrolyte complexes as micellar pseudo-stationary phases, J. Chromatogr. B, 800, 91–100 (2004).

37. L. A. Holland, A. M. Leigh, Bilayered phospholipid micelles and capillary electrophoresis: a new additive for electrokinetic chromatography, Electrophoresis, 24, 2935-2939 (2003).

38. J. O. Mills, L. A. Holland, Membrane-mediated capillary electrophoresis: interaction of cationic peptides with bicelles, Electrophoresis, 25, 1237-1242 (2004).

39. M. -L. Riekkola, J. Å. Jönsson, R. M. Smith, Terminology for analytical capillary electromigration techniques, Pure Appl. Chem., 76, 443-451 (2004).

40. U. Pyell, Micellar electrokinetic chromatography-from theoretical concepts to real samples (Review), Fresenius J. Anal. Chem., 371, 691-703 (2001).

41. M. J. Sepaniak, R. O. Cole, Column efficiency in micellar electrokinetic capillary chromatography, Anal. Chem., 59, 472-476 (1987).
42. S. Terabe, K. Otsuka, T. Ando, Band broadening in electrokinetic chromatography with micellar solutions and open-tubular capillaries, Anal. Chem., 61, 251-260 (1989).

43. S. Terabe, Selectivity manipulation in micellar electrokinetic chromatography, J. Pharm. Biomed. Anal., 10, 705-715 (1992).

44. M. G. Khaledi, S. C. Smith, J. K. Strasters, Micellar electrokinetic capillary chromatography of acidic solutes: migration behavior and optimization strategies, Anal. Chem., 63, 1820-1830 (1991).

45. J. R. Mazzeo, in J. P. Landers (Editor), Handbook of Capillary Electrophoresis, CRC Press, Boca Raton, FL, 1997, p. 53.

46. J. R. Mazzeo, in J. P. Landers (Editor), Handbook of Capillary Electrophoresis, CRC Press, Boca Raton, FL, 1997, p. 60.

47. H. Nishi, T. Fukuyama, M. Matsuo, S. Terabe, Separation and determination of the ingredients of a cold medicine by micellar electrokinetic chromatography with bile salts, J. Chromatogr., 498, 313-323 (1990).
48. G. Esposito, E. Giglio, N. V. Pavel, A. Zanobi, Size and shape of sodium deoxycholate micellar aggregates, J. Phys. Chem., 91, 356-362 (1987).

49. M. Kahlweit, Microemulsions, Science, 240, 617-621 (1988).

50. D. Langevin, Microemulsions, Acc. Chem. Res., 21, 255-260 (1988).

51. T. P. Hoar, J. H. Schulman, Transparent water-in-oil dispersions: the oleopathic hydro-micelle, Nature, 152, 102-103 (1943).

52. J. H. Schulman, W. Stoeckenius, L. M. Prince, Mechanism of formation and structure of micro emulsions by electron microscopy, J. Phys. Chem., 63, 1677-1681 (1959).

53. M. J. Schwuger, K. Stickdorn, R. Schomäcker, Microemulsions in technical processes, Chem. Rev., 95, 849-864 (1995).

54. H. Watarai, Microemulsion in separation sciences, J. Chromatogr. A., 780, 93-102 (1997).
55. H. Watarai, Microemulsion capillary electrophoresis, Chem. Lett., 3, 391-394 (1991).

56. H. Watarai, K. Ogawa, M. Abe, T. Monta, I. Takahashi, Anal. Sci., 7 (Suppl.), 245-248 (1991).

57. C. W. Huie, Recent applications of microemulsion electrokinetic chromatography, Electrophoresis, 27, 60-75 (2006).

58. K. D. Altria, Background theory and applications of microemulsion electrokinetic chromatography, J. Chromatogr. A., 892, 171-186 (2000).

59. A. Marsh, B. Clark, M. Broderick, J. Power, S. Donegan, K. Altria, Recent advances in microemulsion electrokinetic chromatography, Electrophoresis, 25, 3970-3980 (2004).

60. S. H. Hansen, Recent applications of microemulsion electrokinetic chromatography, Electrophoresis, 24, 3900-3907 (2003).

61. C. Rappel, M. Galanski, A. Yasemi, L. Habala, B. K. Keppler, Analysis of anticancer platinum (II)-complexes by microemulsion electrokinetic chromatography: separation of diastereomers and estimation of octanol-water partition coefficients, Electrophoresis, 26, 878-884 (2005).

62. E. Örnskov, J. Gottfries, M. Erickson, S. Folestad, Experimental modelling of drug membrane permeability by capillary electrophoresis using liposomes, micelles and microemulsions, J. Pharm. Pharmacol., 57, 435-442 (2005).

63. Y. Ishihama, Y. Oda, N. Asakawa, A hydrophobicity scale based on the migration index from microemulsion electrokinetic chromatography of anionic solutes, Anal. Chem., 68, 1028-1032 (1996).

64. W. K. Kegel, J. T. G. Overbeek, H. N. W. Lekkerkerker, in P. Kumar, K. L. Mittal (Editors), Handbook of Microemulsion Science and Technology, Marcel Dekker, New York, NY, 1999, p. 13.

65. I. Mikšík, Z. Deyl, Microemulsion electrokinetic chromatography of fatty acids as phenacyl esters, J. Chromatogr. A., 807, 111-119 (1998).
66. R. L. Boso, M. S. Bellini, I. Mikšík, Z. Deyl, Microemulsion electrokinetic chromatography with different organic modifiers: separation of water- and lipid- soluble vitamins, J. Chromatogr. A., 709, 11-19 (1995).

67. H. Watarai, I. Takahashi, Comparison of three different microemulsion systems as the run buffer for the capillary electrophoretic separation of ketone test solutes, Anal. Commun., 35, 289-292 (1998).

68. F. Sicoli, D. Langevin, Shape Fluctuations of Microemulsion Droplets, J. Phys. Chem., 99, 14819-14823 (1995).

69. C. Gabel-Jensen, S. H. Hansen, S. Pedersen-Bjergaard, Separation of neutral compounds by microemulsion electrokinetic chromatography: fundamental studies on selectivity, Electrophoresis, 22, 1330-1336 (2001).

70. L. Song, Q. Ou, W. Yu, G. Li, Separation of six phenylureas and chlorsulfurons standards by micellar, mixed micellar and microemulsion electrokinetic chromatography, J. Chromatogr. A., 699, 371-382 (1995).

71. S. Terabe, N. Matsubara, Y. Ishihama, Y. Okada, Microemulsion electrokinetic chromatography: comparison with micellar electrokinetic chromatography, J. Chromatogr. A., 608, 23-29 (1992).

72. M. F. Miola, M. J. Snowden, K. D. Altria, The use of microemulsion electrokinetic chromatography in pharmaceutical analysis, J. Pharm. Biomed. Anal., 18, 785-797 (1998).

73. K. D. Altria, Application of microemulsion electrokinetic chromatography to the analysis of a wide range of pharmaceuticals and excipients, J. Chromatogr. A, 844, 371- 386 (1999).

74. R. Szücs, E. Van Hove, P. Sandra, Micellar and microemulsion electrokinetic chromatography of hop bitter acids, J. High Resol. Chromatogr., 19, 189-192 (1996).

75. A. Berthod, M. De Carvalho, Oil-in-Water microemulsions as mobile phases in liquid chromatography, Anal. Chem., 64, 2267-2272 (1992).

76. X. Fu, J. Lu, A. Zhu, Microemulsion electrokinetic chromatographic separation of antipyretic analgesic ingredients, J. Chromatogr. A., 735, 353-356 (1996).

77. B. Fogarty, E. Dempsey, F. Regan, Potential of microemulsion electrokinetic chromatography for the separation of priority endocrine disrupting compounds, J. Chromatogr. A., 1014, 129-139 (2003).

78. G. Li, X. Chen, M. Liu, Z. Hu, Separation and identification of active components in the extract of Rheum natural products by microemulsion electrokinetic chromatography, Analyst, 123, 1501-1505 (1998).

79. I. Mikšík, J. Gabriel, Z. Deyl, Microemulsion electrokinetic chromatography of diphenylhydrazones of dicarbonyl sugars, J. Chromatogr. A., 772, 297-303 (1997).

80. L. Vomastová, I. Mikšík, Z. Deyl, Microemulsion and micellar electrokinetic chromatography of steroids, J. Chromatogr. B., 681, 107-113 (1996).

81. J. K. Aiken, C. W. Huie, Use of a microemulsion system to incorporate a lipophilic chiral selector in electrokinetic capillary chromatography, Chromatographia, 35, 448-450 (1993).
82. K. D. Altria, B. J. Clark, P. -E. Mahuzier, The effect of operating variables in microemulsion electrokinetic capillary chromatography, Chromatographia, 52, 758-768 (2000).

83. C. W. Klampfl, Solvent effects in microemulsion electrokinetic chromatography, Electrophoresis, 24, 1537-1543 (2003).

84. S. Gong, T. Bo, L. Huang, K. A. Li, H. Liu, Separation and determination of biphenyl nitrile compounds by microemulsion electrokinetic chromatography with mixed surfactants, Electrophoresis, 25, 1058-1064 (2004).

85. J. M. Sánchez, V. Salvadó, Comparison of micellar and microemulsion electrokinetic chromatography for the analysis of water- and fat-soluble vitamins, J. Chromatogr. A., 980, 241-247 (2002).

86. V. Harang, J. Eriksson, C. E. Sänger-van de Griend, S. P. Jacobsson, D. Westerlund, Microemulsion electrokinetic chromatography of drugs varying in charge and hydrophobicity: I. Impact of parameters on separation performance evaluated by multiple linear regression models, Electrophoresis, 25, 80-93 (2004).
87. C. W. Klampfl, T. Leitner, Quantitative determination of UV filters in sunscreen lotions using microemulsion electrokinetic chromatography, J. Sep. Sci., 26, 1259-1262 (2003).

88. S. H. Hansen, C. Gabel-Jensen, D. T. M. El-Sherbiny, S. Pedersen-Bjergaard, Microemulsion electrokinetic chromatography - or solvent-modifed micellar electrokinetic chromatography?, Trends. Anal. Chem., 20, 614-619 (2001).

89. R. Pomponio, R. Gotti, B. Luppi, V. Cavrini, Microemulsion electrokinetic chromatography for the analysis of green tea catechins: effect of the cosurfactant on the separation selectivity, Electrophoresis, 24, 1658-1667 (2003).

90. Y. Luo, T. Bo, M. Li, S. Gong, K. A. Li, H. Liu, Optimized separation of isoquinoline alkaloids in Thalictrum herbal medicine by microemulsion electrokinetic chromatography, J. Liq. Chromatogr. Rel. Technol., 26, 1719-1730 (2003).

91. S. H. Hansen, C. Gabel-Jensen, S. Pedersen-Bjergaard, Comparison of microemulsion electrokinetic chromatography and solvent-modified micellar electrokinetic chromatography, J. Sep. Sci., 24, 643-650 (2001).
92. S. Cherkaoui, J. -L. Veuthey, Micellar and microemulsion electrokinetic chromatography of selected anesthetic drugs, J. Sep. Sci., 25, 1073-1078 (2002).

93. H. Sirén, A. Karttunen, Microemulsion electrokinetic chromatographic analysis of some polar compounds, J. Chromatogr. B., 783, 113-124 (2003).

94. K. D. Altria, Highly efficient and selective separations of a wide range of analytes obtained by an optimised microemulsion electrokinetic chromatography method, Chromatographia, 49, 457-464 (1999).

95. K. D. Altria, Approaches used in the reduction of buffer electrolysis effects for routine capillary electrophoresis procedures, J. Chromatogr. A., 768, 73-80 (1997).

96. R. Schoftner, W. Buchberger, Systematic investigations of different capillary electrophoretic techniques for separation of methylquinolines, J. Sep. Sci., 26, 1247-1252 (2003).

97. P. E. Mahuzier, B. J. Clark, S. M. Bryant, K. D. Altria, High-speed microemulsion electrokinetic chromatography, Electrophoresis, 22, 3819-3823 (2001).
98. S. J. Gluck, M. H., Benko, R. K. Hallberg, K. P. Steele, Indirect determination of octanol-water partition coefficients by microemulsion electrokinetic chromatography, J. Chromatogr. A., 744, 141-146 (1996).

99. M. D. Mertzman, J. P. Foley, Chiral cyclodextrin-modified microemulsion electrokinetic chromatography, Electrophoresis, 25, 1188-1200 (2004).

100. T. Bo, X. Yang, K. A. Li, L. Xu, H. Liu, Comparison of micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for separation of pharmacologically active xanthones from Securidaca inappendiculata, J. Sep. Sci., 26, 133-136 (2003).

101. K. D. Altria, B. J. Clark, M. A. Kelly, Investigation into the effects of sample dissolving solvents and sample matrices on the separations obtained in capillary electrophoresis. part II. MECC, J. High Resol. Chromatogr., 22, 55-58 (1999).

102. M. Ivanova, A. Piunti, E. Marziali, N. Komarova, M. A. Raggi, E. Kenndler, Microemulsion electrokinetic chromatography applied for separation of levetiracetam from other antiepileptic drugs in polypharmacy, Electrophoresis, 24, 992-998 (2003).
103. J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated β-cyclodextrin as pseudostationary phases in electrokinetic chromatography, J. Chromatogr. A., 838, 3-10 (1999).

104. L. Debusschère, C. Demesmay, J. L. Rocca, G. Lachatre, H. Lofti, Separation of cardiac glycosides by micellar electrokinetic chromatography and microemulsion electrokinetic chromatography, J. Chromatogr. A., 779, 227-233 (1997).

105. Y. Mrestani, N. El-Mokdad, H. H. Rüttinger, R. Neubert, Characterization of partitioning behavior of cephalosporins using microemulsion and micellar electrokinetic chromatography, Electrophoresis, 19, 2895-2899 (1998).

106. Y. Ishihama, Y. Oda, K. Uchikawa, N. Asakawa, Evaluation of solute hydrophobicity by microemulsion electrokinetic chromatography, Anal. Chem., 67, 1588-1595 (1995).

107. H. -Y. Huang, Y. -C. Lai, C. -W. Chiu, J. -M. Yeh, Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products, J. Chromatogr. A., 993, 153-164 (2003).

108. K. D. Altria, P. -E. Mahuzier, B. J. Clark, Background and operating parameters in microemulsion electrokinetic chromatography, Electrophoresis, 24, 315-324 (2003).

109. R. Kuhn, S. Hoffstetter-Kuhn, Capillary Electrophoresis: Principles and Practice, Springer-Verlag, Berlin, 1993, p. 24.

110. B. C. Valle, F. H. Billiot, S. A. Shamsi, X. Zhu, A. M. Powe, I. M. Warner, Combination of cyclodextrins and polymeric surfactants for chiral separations, Electrophoresis, 25, 743-752 (2004).

第二章
1. 中國藥材學,謝明村等編著,國立編譯館出版,台北市,一九八八年十一月初版

2. 中藥藥理學,陳榮福編著,國立中國醫藥研究所出版,台北縣,一九九一年五月初版

3. T. Yokozawa, A. Ishida, Y. Kashiwada, E. J. Cho, H. Y. Kim, Y. Ikeshiro, Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components, J. Pharm. Pharmacol., 56, 547-556 (2004).

4. N. Iizuka, M. Oka, K. Yamamoto, A. Tangoku, K. Miyamoto, T. Miyamoto, S. Uchimura, Y. Hamamoto, K. Okita, Identification of common or distinct genes related to antitumor activities of a medicinal herb and its major component by oligonucleotide microarray, Int. J. Cancer, 107, 666-672 (2003).

5. S. Ikemoto, K. Sugimura, N. Yoshida, R. Yasumoto, S. Wada, K. Yamamoto, T. Kishimoto, Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines, Urology, 55, 951-955 (2000).

6. J. E. Robbers, M. K. Speedie, V. E. Tyler, Pharmacognosy and Pharmacobiotechnology, Williams & Wilkins, Baltimore, MD, 1996, p. 54.

7. S. K. Agarwal, S. S. Singh, V. Lakshmi, S. Verma, S. Kumar, Chemistry and pharmacology of Rhubarb (Rheum species)-a review, J. Sci. Ind. Res., 60, 1-9 (2001).

8. S. Lin, M. Fujii, D. X. Hou, Rhein induces apoptosis in HL-60 cells via reactive oxygen species-independent mitochondrial death pathway, Arch. Biochem. Biophy., 418, 99-107 (2003).

9. H. Liu, K. Wang, X. Chen, Z. Hu, Determination of rhein, baicalin and berberine in traditional Chinese medicinal preparations by capillary electrophoresis with two-marker technique, Biomed. Chromatogr., 18, 288-292 (2004).

10. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem., 56, 111-113 (1984).

11. S. Terabe, K. Otsuka, T. Ando, Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem., 57, 834-841 (1985).

12. H. Nishi, S. Terabe, Micellar electrokinetic chromatography perspectives in drug analysis, J. Chromatogr. A, 735, 3-27 (1996).

13. H. X. Zhang, M. C. Liu, Separation procedures for the pharmacologically active components of rhubarb, J. Chromatogr. B, 812, 175-181 (2004).

14. S. W. Sun, P. C. Yeh, Analysis of rhubarb anthraquinones and bianthrones by microemulsion electrokinetic chromatography, J. Pharm. Biomed. Anal., 36, 995-1001 (2005).

15. G. Chen, H. Zhang, J. Ye, Determination of baicalein, baicalin and quercetin in Scutellariae Radix and its preparations by capillary electrophoresis with electrochemical detection, Talanta, 53, 471-479 (2000).

16. Y. Peng, X. Ding, Q. Chu, J. Ye, Determination of baicalein, baicalin, and chlorogenic acid in Yinhuang oral liquid by capillary electrophoresis with electrochemical detection, Anal. Lett., 36, 2793-2803 (2003).

17. Y. M. Liu, S. J. Sheu, Determination of coptisine, berberine and palmatine in traditional Chinese medicinal preparations by capillary electrophoresis, J. Chromatogr., 639, 323-328 (1993).

18. S. S. Sun, H. M. Tseng, Improved detection of Coptidis alkaloids by field-amplified sample stacking in capillary electrophoresis, J. Pharm. Biomed. Anal., 36, 43-48 (2004).

19. K. L. Li, S. J. Sheu, Determination of flavonoids and alkaloids in the scute-coptis herb couple by capillary electrophoresis, Anal. Chim. Acta, 313, 113-120 (1995).

20. S. J. Sheu, C. F. Lu, Capillary electrophoresis determination of six bioactive constituents in San-Huang-Hsieh-Hsin-Tang, J. High Resol. Chromatogr., 19, 409-412 (1996).

21. 金匱要略注釋,國立編譯館主編,國立編譯館出版,台北市,一九八六年一
月初版

22. H. C. Chen, M. T. Hsieh, Two-year experience with “San-Huang-Hsieh-Hsin-Tang” in essential hypertension, Am. J. Chin. Med., 14, 51-58 (1986).

23. H. C. Chen, M. T. Hsieh, Hemodynamic effects of “San-Huang-Hsieh-Hsin-Tang” in patients with essential hypertension, Am. J. Chin. Med., 14, 153-156 (1986).

24. H. C. Chen, M. T. Hsieh, Effects of San-Huang-Hsieh-Hsin-Tang on sympathetic activity, plasma rennin, and plasma aldosterone, Clin. Ther., 7, 600-606 (1985).

25. C. H. Kuo, S. S. Sun, Analysis of nine rhubarb anthraquinones and bianthrones by micellar electrokinetic chromatography using experimental design, Anal. Chim. Acta, 482, 47-58 (2003).

26. S. Yang, M. G. Khaledi, Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants, Anal. Chem., 67, 499-510 (1995).

27. S. K. Poole, C. F. Poole, Characterization of surfactant selectivity in micellar electrokinetic chromatography, Analyst, 122, 267-274 (1997).

28. S. Yang, J. G. Bumgarner, M. G. Khaledi, Chemical selectivity in micellar electrokinetic chromatography II. Rationalization of elution patterns in different surfactant systems, J. Chromatogr. A, 738, 265-274 (1996).

29. P. G. H. M. Muijselaar, H. A. Claessens, C. A. Cramers, Parameters controlling the elution window and retention factors in micellar electrokinetic capillary chromatography, J. Chromatogr. A, 696, 273-284 (1995).

30. H. Corstjens, H. A. H. Billiet, J. Frank, K. Ch. A. M. Luyben, Optimization of selectivity in capillary electrophoresis with emphasis on micellar electrokinetic capillary chromatography, J. Chromatogr. A, 715, 1-11 (1995).

31. Z. Liu, H. Zou, M. Ye, J. Ni, Y. Zhang, Effects of organic modifiers on retention mechanism and selectivity in micellar electrokinetic capillary chromatography studied by linear salvation energy relationships, J. Chromatogr. A, 863, 69-79 (1999).

32. G. Esposito, E. Giglio, N. V. Pavel, A. Zanobi, Size and shape of sodium deoxycholate micellar aggregates, J. Phys. Chem., 91, 356-362 (1987).

33. R. O. Cole, M. J. Sepaniak, W. L. Hinze, J. Gorse, K. Oldiges, Bile salt surfactants in micellar electrokinetic capillary chromatography application to hydrophobic molecule separations, J. Chromatogr., 557, 113-123 (1991).

第三章
1. L. K. Amundsen, J. T. Kokkonen, S. Rovio, H. Sirén, Analysis of anabolic steroids by partial filling micellar electrokinetic capillary chromatography and electrospray mass spectrometry, J. Chromatogr. A, 1040, 123-131 (2004).

2. P. J. Proteau, in: J. H. Block, J. M. Beale Jr. (Editors), Wilson and Gisvold''s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincott Williams & Wilkins, Philadelphia, PA, 2004, p. 767.

3. S. A. Khan, D. Bhandare, R. T. Chatterton Jr., The local hormonal environment and related biomarkers in the normal breast, Endocr. -Relat. Cancer, 12, 497-510 (2005).

4. G. C. Kabat, E. S. O’Leary, M. D. Gammon, D. W. Sepkovic, S. L. Teitelbaum, J. A. Britton, M. B. Terry, A. I. Neugut, H. L. Bradlow, Estrogen metabolism and breast cancer, Epidemiology, 17, 80-88 (2006).

5. P. K. Zarzycki, K. M. Kulhanek, R. Smith, V. L. Clifton, Determination of steroids in human plasma using temperature-dependent inclusion chromatography for metabolomic investigations, J. Chromatogr. A, 1104, 203-208 (2006).
6. J. P. Holst, O. P. Soldin, T. Guo, S. J. Soldin, Steroid hormones: relevance and measurement in the clinical laboratory, Clin. Lab. Med., 24, 105-118 (2004).

7. T. Guo, M. Chan, S. J. Soldin, Steroid profiles using liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization source, Arch. Pathol. Lab. Med., 128, 469-475 (2004).

8. S. Diallo, L. Lecanu, J. Greeson, V. Papadopoulos, A capillary gas chromatography/mass spectrometric method for the quantification of hydroxysteroids in human plasma, Anal. Biochem., 324, 123-130 (2004).

9. L. Yang, T. Luan, C. Lan, Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography-mass spectrometry, J. Chromatogr. A, 1104, 23-32 (2006).

10. Y. Yamini, M. Asghari-Khiavi, N. Bahramifar, Effects of different parameters on supercritical fluid extraction of steroid drugs, from spiked matrices and tablets, Talanta, 58, 1003-1010 (2002).

11. J. S. Loran, K. D. Cromie, An evaluation of the use of supercritical fluid chromatography with light scattering detection for the analysis of steroids, J. Pharm. Biomed. Anal., 8, 607-611 (1990).

12. S. Zuehlke, U. Duennbier, T. Heberer, Determination of estrogenic steroids in surface water and wastewater by liquid chromatography-electrospray tandem mass spectrometry, J. Sep. Sci., 28, 52-58 (2005).

13. M. J. Lόpez de Alda, D. Barcelό, Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection-mass spectrometry, J. Chromatogr. A, 892, 391-406 (2000).

14. S. Görög, Recent advances in the analysis of steroid hormones and related drugs, Anal. Sci., 20, 767-782 (2004).

15. R. K. Gilpin, L. A. Pachla, Pharmaceuticals and related drugs, Anal. Chem., 77, 3755-3770 (2005).

16. S. K. Wiedmer, M. -L. Riekkola, Separation of steroids by micellar electrokinetic capillary chromatography. Some physicochemical considerations, Rev. Anal. Chem., 18, 67-105 (1999).

17. L. Vomastová, I. Mikšík, Z. Deyl, Microemulsion and micellar electrokinetic chromatography of steroids, J. Chromatogr. B, 681, 107-113 (1996).

18. S. Noé, J. Böhler, E. Keller, A. W. Frahm, Evaluation and optimisation of separation buffers for the determination of corticosteroids with micellar electrokinetic capillary chromatography (MECC), J. Pharm. Biomed. Anal., 18, 911-918 (1998).

19. J. H. Jumppanen, S. K. Wiedmer, H. Sirén, M. -L. Riekkola, H. Haario, Optimized separation of seven corticosteroids by micellar electrokinetic chromatography, Electrophoresis, 15, 1267-1272 (1994).

20. Y. Kobayashi, J. Matsui, F. Watanabe, Simultaneous separation of free and conjugated steroids by micellar electrokinetic chromatography and its clinical application, Biol. Pharm. Bull., 18, 1614-1616 (1995).

21. A. J. Ji, M. F. Nunez, D. Machacek, J. E. Ferguson, M. F. Iossi, P. C. Kao, J. P. Landers, Separation of urinary estrogens by micellar electrokinetic chromatography, J. Chromatogr. B, 669, 15-26 (1995).

22. M. Katayama, Y. Matsuda, K. -I. Shimokawa, S. Kaneko, Simultaneous determination of 16 estrogens, dehydroepiandrosterone and their glucuronide and sulfate conjugates in serum using sodium cholate micelle capillary electrophoresis, Biomed. Chromatogr., 17, 263-267 (2003).

23. H. Nishi, T. Fukuyama, M. Matsuo, S. Terabe, Separation and determination of lipophilic corticosteroids and benzothiazepin analogues by micellar electrokinetic chromatography using bile salts, J. Chromatogr., 513, 279-295 (1990).

24. C. -Y. Kuo, S. -M. Wu, Micellar electrokinetic chromatography for simultaneous determination of six corticosteroids in commercial pharmaceuticals, J. Sep. Sci., 28, 144-148 (2005).

25. K. C. Chan, G. M. Muschik, H. J. Issaq, P. K. Siiteri, Separation of estrogens by micellar electrokinetic chromatography, J. Chromatogr. A, 690, 149-154 (1995).
26. P. Britz-McKibbin, T. Ichihashi, K. Tsubota, D. D. Y. Chen, S. Terabe, Complementary on-line preconcentration strategies for steroids by capillary electrophoresis, J. Chromatogr. A, 1013, 65-76 (2003).

27. S. K. Wiedmer, H. Sirén, M. -L. Riekkola, Determination of serum corticosteroids by mixed micellar electrokinetic capillary chromatography with sodium dodecyl sulfate and sodium cholate, Electrophoresis, 18, 1861-1864 (1997).

28. M. A. Abubaker, M. G. Bissell, J. R. Petersen, Rapid profiling of clinically relevant steroids by micellar electrokinetic capillary chromatography, J. Cap. Elec., 2, 105-110 (1995).

29. M. A. Abubaker, J. R. Petersen, M. G. Bissell, Micellar electrokinetic capillary chromatographic separation of steroids in urine by trioctylphosphine oxide and cationic surfactant, J. Chromatogr. B, 674, 31-38 (1995).

30. H. -J. Shen, C. -H. Lin, Comparison of the use of anionic and cationic surfactants for the separation of steroids based on MEKC and sweeping-MEKC modes, Electrophoresis, 27, 1255-1262 (2006).
31. Y. -F. Huang, M. -M. Hsieh, W. -L. Tseng, H. -T. Chang, On-line concentration of microheterogeneous proteins by capillary electrophoresis using SDS and PEO as additives, J. Proteome Res., 5, 429-436 (2006).

32. J. C. Miller, J. N. Miller, Statistics for Analytical Chemistry, Ellis Horwood limited, Chichester, 1988, p. 119.

33. T. Tsuda, Modification of electroosmotic flow with cetyltrimethylammonium bromide in capillary zone electrophoresis, J. High Resolut. Chromatogr. Chromatogr. Commun., 10, 622-624 (1987).

34. J. C. Reijenga, G. V. A. Aben, Th. P. E. M. Verheggen, F. M. Everaerts, Effect of electroosmosis on detection in isotachophoresis, J. Chromatogr., 260, 241-254 (1983).

35. J. R. Mazzeo, in J. P. Landers (Editor), Handbook of Capillary Electrophoresis, CRC Press, Boca Raton, FL, 1997, p. 60.

36. H. J. Crabtree, I. D. Ireland, N. J. Dovichi, Effect of acetonitrile in the sampling solution on the analyte peak shape in micellar electrokinetic capillary chromatography, J. Chromatogr. A, 669, 263-267 (1994).

37. C. Ràfols, A. Poza, E. Fuguet, M. Rosés, E. Bosch, Solute-solvent interactions in micellar electrokinetic chromatography: V. Factors that produce peak splitting, Electrophoresis, 23, 2408-2416 (2002).

38. B. -H. Li, L. -P. Yu, X. -P. Yan, An insight into peak-splitting phenomenon in on-column concentration-micellar electrokinetic capillary chromatography for aqueous sample solution, Anal. Lett., 38, 1975-1985 (2005).

39. P. -L. Chang, T. -C. Chiu, H. -T. Chang, Stacking, derivatization, and separation by capillary electrophoresis of amino acids from cerebrospinal fluids, Electrophoresis, 27, 1922-1931 (2006).

40. W. -L. Tseng, Y. -W. Lin, H. -T. Chang, Improved separation of microheterogeneities and isoforms of proteins by capillary electrophoresis using segmental filling with SDS and PEO in the background electrolyte, Anal. Chem., 74, 4828-4834 (2002).

41. E. Kłodzińska, H. Dahm, H, Rόżycki, J. Szeliga, M. Jackowski, B. Buszewski, Rapid identification of Escherichia coli and Helicobacter pylori in biological samples by capillary zone electrophoresis, J. Sep. Sci., 29, 1180-1187 (2006).

42. E. Van Hove, R. Szücs, P. Sandra, Alcohol modifiers in MEKC with SDS as surfactant. Study on the influence of the alcohol chain length (C1-C12), J. High Resol. Chromatogr., 19, 674-678 (1996).

43. S. Katsuta, T. Tsumura, K. Saitoh, N. Teramae, Control of selectivity in micellar electrokinetic chromatography by modification of sodium dodecyl sulfate micelles with organic hydroxy compounds, J. Chromatogr. A, 705, 319-324 (1995).

44. J. Palmer, S. Atkinson, W. Y. Yoshida, A. M. Stalcup, J. P. Landers, Charged chelate-capillary electrophoresis of endogenous corticosteroids, Electrophoresis, 19, 3045-3051 (1998).

45. S. Honda, S. Iwase, A. Makino, S. Fujiwara, Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines, Anal. Biochem., 176, 72-77 (1989).

46. J. P. Landers, R. P. Oda, B. J. Madden, T. C. Spelsberg, High-performance capillary electrophoresis of glycoproteins: the use of modifiers of electroosmotic flow for analysis of microheterogeneity, Anal. Biochem., 205, 115-124 (1992).

47. C. Fernandez, G. Egginger, I. W. Wainer, D. K. Lloyd, Separation of testosterone metabolites in microsomal incubates using a new capillary electrophoresis assay, J. Chromatogr. B, 677, 363-368 (1996).

48. R. H. King, L. T. Grady, J. T. Reamer, Progesterone injection assay by liquid chromatography, J. Pharm. Sci., 63, 1591-1596 (1974).

第四章
1. S. A. B. E. van Acker, L. M. H. Koymans, A. Bast, Molecular pharmacology of vitamin E: structural aspects of antioxidant activity, Free Radic. Biol. Med., 15, 311-328 (1993).

2. A. Pyka, J. Sliwiok, Chromatographic separation of tocopherols, J. Chromatogr. A, 935, 71-76 (2001).

3. A. Hosomi, M. Arita, Y. Sato, C. Kiyose, T. Ueda, O. Igarashi, H. Arai, K. Inoue, Affinity for α-transfer protein as a determinant of the biological activities of vitamin E analogs, FEBS Lett., 409, 105-108 (1997).

4. S. Christen, A. A. Woodall, M. K. Shigenaga, P. T. Southwell-Keely, M. W. Duncan, B. N. Ames, γ-Tocopherol traps mutagenic electrophiles such as NOx and complements α-tocopherol: physiological implications, Proc. Natl. Acad. Sci. U.S.A., 94, 3217-3222 (1997).

5. M. Krucker, A. Lienau, K. Putzbach, M. D. Grynbaum, P. Schuler, K. Albert, Hyphenation of capillary HPLC to microcoil 1H NMR spectroscopy for the determination of tocopherol homologues, Anal. Chem., 76, 2623-2628 (2004).

6. A. Rizzolo, S. Polesello, Chromatographic determination of vitamins in foods, J. Chromatogr., 624, 103-152 (1992).

7. A. Gliszczyńska- Świgło, E. Sikorska, Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils, J. Chromatogr. A, 1048, 195-198 (2004).

8. Z. Aturki, G. D’Orazio, S. Fanali, Rapid assay of vitamin E in vegetable oils by reversed-phase capillary electrochromatography, Electrophoresis, 26, 798-803 (2005).

9. S. Fanali, P. Catarcini, M. G. Quaglia, E. Camera, M. Rinaldi, M. Picardo, Separation of δ-, γ- and α-tocopherols by CEC, J. Pharm. Biomed. Anal., 29, 973-979 (2002).

10. G. Panfili, A. Fratianni, M. Irano, Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals, J. Agric. Food Chem., 51, 3940-3944 (2003).

11. A. K. Hewavitharana, M. C. Lanari, C. Becu, Simultaneous determination of vitamin E homologs in chicken meat by liquid chromatography with fluorescence detection, J. Chromatogr. A, 1025, 313-317 (2004).

12. S. Fanali, E. Camera, B. Chankvetadze, G. D’Orazio, M. G. Quaglia, Separation of tocopherols by nano-liquid chromatography, J. Pharm. Biomed. Anal., 35, 331-337 (2004).

13. C. W. Henry III, C. A. Fortier, I. M. Warner, Separation of tocopherol isomers using capillary electrochromatography: comparison of monomeric and polymeric C30 stationary phases, Anal. Chem., 73, 6077-6082 (2001).

14. B. J. Spencer, W. C. Purdy, Comparison of the separation of fat-soluble vitamins using β-cyclodextrins in high-performance liquid chromatography and micellar electrokinetic chromatography, J. Chromatogr. A, 782, 227-235 (1997).

15. W. K. Kegel, J. T. G. Overbeek, H. N. W. Lekkerkerker, in P. Kumar, K. L. Mittal (Editors), Handbook of Microemulsion Science and Technology, Marcel Dekker, New York, NY, 1999, p. 13.
16. K. D. Altria, P. -E. Mahuzier, B. J. Clark, Background and operating parameters in microemulsion electrokinetic chromatography, Electrophoresis, 24, 315-324 (2003).

17. A. Marsh, B. Clark, M. Broderick, J. Power, S. Donegan, K. Altria, Recent advances in microemulsion electrokinetic chromatography, Electrophoresis, 25, 3970-3980 (2004).

18. K. D. Altria, Background theory and applications of microemulsion electrokinetic chromatography, J. Chromatogr. A, 892, 171-186 (2000).

19. R. L. Boso, M. S. Bellini, I. Mikšík, Z. Deyl, Microemulsion electrokinetic chromatography with different organic modifiers: separation of water- and lipid- soluble vitamins, J. Chromatogr. A, 709, 11-19 (1995).

20. S. Pedersen-Bjergaard, Ø. Næss, S. Moestue, K. E. Rasmussen, Microemulsion electrokinetic chromatography in suppressed electroosmotic flow environment. Separation of fat-soluble vitamins, J. Chromatogr. A, 876, 201-211 (2000).

21. S. H. Hansen, Recent applications of microemulsion electrokinetic chromatography, Electrophoresis, 24, 3900-3907 (2003).

22. C. Gabel-Jensen, S. H. Hansen, S. Pedersen-Bjergaard, Separation of neutral compounds by microemulsion electrokinetic chromatography: fundamental studies on selectivity, Electrophoresis, 22, 1330-1336 (2001).

23. K. D. Altria, B. J. Clark, P. -E. Mahuzier, The effect of operating variables in microemulsion electrokinetic capillary chromatography, Chromatographia, 52, 758-768 (2000).

24. M. Beaufour, P. Morin, J. -P. Ribet, Chiral separation of the four stereoisomers of a novel antianginal agent using a dual cyclodextrin system in capillary electrophoresis, J. Sep. Sci., 28, 529-533 (2005).

25. H. Nishi, M. Matsuo, Separation of corticosteroids and aromatic-hydrocarbons by cyclodextrin-modified micellar electrokinetic chromatography, J. Liq. Chromatogr., 14, 973-986 (1991).

26. H. -Y. Huang, C. -L. Chuang, C. -W. Chiu, M. -C. Chung, Determination of food colorants by microemulsion electrokinetic chromatography, Electrophoresis, 26, 867-877 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top