跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賈德韻
研究生(外文):Bettie Der-Yuin Jea
論文名稱:3-芳香基亞甲基喹啉-2,4-雙酮類衍生物作為C型肝炎病毒核糖核酸聚合酶抑制劑之設計與合成
論文名稱(外文):Design and Synthesis of 3-Arylmethylene-1H-quinoline-2,4-dione Derivatives as Potential Hepatitis C Virus RNA Polymerase Inhibitors
指導教授:陳基旺陳基旺引用關係
指導教授(外文):Ji-Wang Chern
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:70
中文關鍵詞:C型肝炎病毒NS5B核醣核酸聚合酶結構跳躍式藥物設計原理活性區抑制劑異位結合區抑制劑
外文關鍵詞:Hepatitis C virus (HCV)NS5B RNA-dependent RNA polymerase (RdRp)scaffold hoppingactive site inhibitorsallosteric inhibitors.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
C型肝炎病毒已在全球流行病學造成嚴重威脅。約有七至八成之感染者將發展為長期慢性肝炎,並有可能導致肝硬化甚或肝癌。現時治療C型肝炎以干擾素-alpha(interferon-alpha)為主之療法卻療效有限。因此研發創新且更有效之治療方法不但重要並且迫切。WSP-9376為本實驗室由DOCK軟體所完成之電腦虛擬篩選找出之C型肝炎病毒解旋酶抑制劑(IC50 = 20 uM)。之後在一篇專利中發現其並為C型肝炎病毒NS5B聚合酶之抑制劑(IC50 = 44.5 uM)。因此將之選為先導化合物(lead compound)。發展C型肝炎藥物時,需同時考慮藥效與選擇性,以減低毒性及副作用,NS5B核醣核酸聚合酶(RNA-dependent RNA polymerase, RdRp)因此為合適之標的。其不但為C型肝炎病毒複製所必須,且哺乳動物中並未有功能上相對應之蛋白質。小分子與NS5B之結合區域(binding sites)較常見者為五處,四處為異位結合區域(allosteric binding sites),另一為活性區域(active site)。大部分活性區抑制劑屬於受質導向之核苷類似物(nucleoside analogues)或產物導向之焦磷酸類似物(pyrophosphate-mimics)。反觀異位結合區抑制劑,結構多樣性高且變化豐富。藉由結構跳躍式藥物設計原理(scaffold hopping),我們設計了四個系列之化合物,唯一順利合成出之為3-芳香基亞甲基喹啉-2,4-雙酮類。化合物44b為這之中抑制NS5B聚合酶活性較好的(IC50 = 8.4 uM)。雖然優化之程度與先導化合物(WSP-9376)相較並不顯著,但我們成功地找出了以喹啉為基礎架構之NS5B抑制劑,而且其與WSP-9376之結構相去甚遠。此外,這一系列化合物會對NS5B聚合酶之受質造成影響,因此其與NS5B之結合區域很可能位於活性區附近;換句話說,其將有可能成為另一系列不同於已發表之活性區抑制劑!
Hepatitis C virus (HCV) has become a serious etiological agent worldwide. HCV sets up a persistent infection in 70-80% of cases, and can lead to cirrhosis or hepatoma. Currently available interferon-based treatments show limited efficacy. Therefore, to develop new and more effective therapies is a vital and urgent issue. WSP-9376 was discovered as an HCV helicase inhibitor (IC50 = 20 uM) in our laboratory through computational virtual screening using the DOCK program. Coincidentally, this compound was found as an HCV NS5B polymerase inhibitor (IC50 = 44.5 uM) as well, thus being selected as our lead. When it comes to both potency and selectivity toward HCV, NS5B RNA-dependent RNA polymerase (RdRp) can be a proper target. Since it is essential for HCV RNA polymerization and there is no functional counterpart in mammalian cells. Five binding sites of NS5B, four allosteric binding sites and the active site, are commonly reported. Most of the active site inhibitors belong to nucleoside analogues (substrate-like) or pyrophosphate-mimics (product-like). On the contrary, numerous classes of structurally diversified allosteric inhibitors have been developed. By employing scaffold hopping strategies, four series of compounds were designed whereas only one was fulfilled in synthesis, i.e. 3-arylmethylene-1H-quinoline-2,4-diones. Among them, compound 44b is the most potent NS5B inhibitor with an IC50 of 8.4 uM against NS5B. Albeit there is only slight improvement in the inhibitory activity of 44b compared with the lead, it is more important that we have identified this core structure for the development of new NS5B inhibitor, even if the structure differs a lot from that of WSP-9376. Moreover, the binding site of this series of compounds may be the active site, since compound 44b has been shown to have influence to some extent on the substrates of NS5B. In other words, this is probably another series of active site inhibitors distinguished from those published previously.
Contents
Referees’ Approval i
Acknowledgements ii
Abstract in Chinese iii
Abstract in English iv
I. Introduction 1
1.1 History 1
1.2 Hepatitis C Virus (HCV) 2
1.3 Nowadays 5
1.4 NS5B as Target for Drug Development 7
II. The Concept of Inhibitor Design 14
III. Results and Discussion 18
3.1 Approaches toward the Synthesis of Target 1 18
3.1.1 Method I 18
3.1.2 Method II 22
3.2 Approaches toward the Synthesis of Target 2 26
3.3 Approaches toward the Synthesis of Target 3 30
3.4 Synthesis of Target 4 34
3.5 NS5B Inhibition Assay 42
3.6 Computer Modeling 44
IV. Conclusion 48
V. Experimental Section 49
5.1 Chemistry 49
5.2 NS5B Inhibition Assay 57
5.3 Molecular docking studies 60
References 62
Appendixes 71
1. Kuo, G.; Choo, Q. L.; Alter, H. J.; Gitnick, G. L.; Redeker, A. G.; Purcell, R. H.; Miyamura, T.; Dienstag, J. L.; Alter, M. J.; Stevens, C. E. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 1989, 244, 362-364.
2. Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244, 359-362.
3. Alter, H. J.; Purcell, R. H.; Shih, J. W.; Melpolder, J. C.; Houghton, M.; Choo, Q. L.; Kuo, G. Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N. Engl. J. Med. 1989, 321, 1494-1500.
4. Lindenbach, B. D.; Rice, C. M. Unravelling hepatitis C virus replication from genome to function. Nature 2005, 436, 933-938.
5. Davis, G. L.; Krawczynski, K.; Szabo, G. Hepatitis C virus infection--pathobiology and implications for new therapeutic options. Dig. Dis. Sci. 2007, 52, 857-875.
6. Qureshi, S. A. Hepatitis C virus--biology, host evasion strategies, and promising new therapies on the horizon. Med. Res. Rev. 2007, 27, 353-373.
7. Simmonds, P.; Bukh, J.; Combet, C.; Deleage, G.; Enomoto, N.; Feinstone, S.; Halfon, P.; Inchauspe, G.; Kuiken, C.; Maertens, G.; Mizokami, M.; Murphy, D. G.; Okamoto, H.; Pawlotsky, J. M.; Penin, F.; Sablon, E.; Shin, I.; Stuyver, L. J.; Thiel, H. J.; Viazov, S.; Weiner, A. J.; Widell, A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 2005, 42, 962-973.
8. Sarbah, S. A.; Younossi, Z. M. Hepatitis C: an update on the silent epidemic. J. Clin. Gastroenterol. 2000, 30, 125-143.
9. Walker, M. P.; Appleby, T. C.; Zhong, W.; Lau, J. Y.; Hong, Z. Hepatitis C virus therapies: current treatments, targets and future perspectives. Antivir. Chem. Chemother. 2003, 14, 1-21.
10. Shimizu, Y. K.; Iwamoto, A.; Hijikata, M.; Purcell, R. H.; Yoshikura, H. Evidence for in vitro replication of hepatitis C virus genome in a human T-cell line. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 5477-5481.
11. Lohmann, V.; Korner, F.; Koch, J.; Herian, U.; Theilmann, L.; Bartenschlager, R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999, 285, 110-113.
12. Hinrichsen, H.; Benhamou, Y.; Wedemeyer, H.; Reiser, M.; Sentjens, R. E.; Calleja, J. L.; Forns, X.; Erhardt, A.; Cronlein, J.; Chaves, R. L.; Yong, C. L.; Nehmiz, G.; Steinmann, G. G. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology 2004, 127, 1347-1355.
13. Beaulieu, P. L.; Tsantrizos, Y. S. Inhibitors of the HCV NS5B polymerase: new hope for the treatment of hepatitis C infections. Curr. Opin. Investig. Drugs 2004, 5, 838-850.
14. Lesburg, C. A.; Cable, M. B.; Ferrari, E.; Hong, Z.; Mannarino, A. F.; Weber, P. C. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 1999, 6, 937-943.
15. LaPlante, S. R.; Jakalian, A.; Aubry, N.; Bousquet, Y.; Ferland, J. M.; Gillard, J.; Lefebvre, S.; Poirier, M.; Tsantrizos, Y. S.; Kukolj, G.; Beaulieu, P. L. Binding mode determination of benzimidazole inhibitors of the hepatitis C virus RNA polymerase by a structure and dynamics strategy. Angew. Chem. Int. Ed Engl. 2004, 43, 4306-4311.
16. Dhanak, D.; Duffy, K. J.; Johnston, V. K.; Lin-Goerke, J.; Darcy, M.; Shaw, A. N.; Gu, B.; Silverman, C.; Gates, A. T.; Nonnemacher, M. R.; Earnshaw, D. L.; Casper, D. J.; Kaura, A.; Baker, A.; Greenwood, C.; Gutshall, L. L.; Maley, D.; DelVecchio, A.; Macarron, R.; Hofmann, G. A.; Alnoah, Z.; Cheng, H. Y.; Chan, G.; Khandekar, S.; Keenan, R. M.; Sarisky, R. T. Identification and biological characterization of heterocyclic inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Biol. Chem. 2002, 277, 38322-38327.
17. Carroll, S. S.; Tomassini, J. E.; Bosserman, M.; Getty, K.; Stahlhut, M. W.; Eldrup, A. B.; Bhat, B.; Hall, D.; Simcoe, A. L.; LaFemina, R.; Rutkowski, C. A.; Wolanski, B.; Yang, Z.; Migliaccio, G.; De, F. R.; Kuo, L. C.; MacCoss, M.; Olsen, D. B. Inhibition of hepatitis C virus RNA replication by 2''-modified nucleoside analogs. J. Biol. Chem. 2003, 278, 11979-11984.
18. Chan, L.; Reddy, T. J.; Proulx, M.; Das, S. K.; Pereira, O.; Wang, W. Y.; Siddiqui, A.; Yannopoulos, C. G.; Poisson, C.; Turcotte, N.; Drouin, A.; aoui-Ismaili, M. H.; Bethell, R.; Hamel, M.; L''Heureux, L.; Bilimoria, D.; Nguyen-Ba, N. Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase. J. Med. Chem. 2003, 46, 1283-1285.
19. Love, R. A.; Parge, H. E.; Yu, X.; Hickey, M. J.; Diehl, W.; Gao, J. J.; Wriggers, H.; Ekker, A.; Wang, L. A.; Thomson, J. A.; Dragovich, P. S.; Fuhrman, S. A. Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. J. Virol. 2003, 77, 7575-7581.
20. Pfefferkorn, J. A.; Greene, M. L.; Nugent, R. A.; Gross, R. J.; Mitchell, M. A.; Finzel, B. C.; Harris, M. S.; Wells, P. A.; Shelly, J. A.; Anstadt, R. A.; Kilkuskie, R. E.; Kopta, L. A.; Schwende, F. J. Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid. Bioorg. Med. Chem. Lett. 2005, 15, 2481-2486.
21. Pfefferkorn, J. A.; Nugent, R.; Gross, R. J.; Greene, M.; Mitchell, M. A.; Reding, M. T.; Funk, L. A.; Anderson, R.; Wells, P. A.; Shelly, J. A.; Anstadt, R.; Finzel, B. C.; Harris, M. S.; Kilkuskie, R. E.; Kopta, L. A.; Schwende, F. J. Inhibitors of HCV NS5B polymerase. Part 2: Evaluation of the northern region of (2Z)-2-benzoylamino-3-(4-phenoxy-phenyl)acrylic acid. Bioorg. Med. Chem. Lett. 2005, 15, 2812-2818.
22. Harper, S.; Avolio, S.; Pacini, B.; Di Filippo, M.; Altamura, S.; Tomei, L.; Paonessa, G.; Di Marco, S.; Carfi, A.; Giuliano, C.; Padron, J.; Bonelli, F.; Migliaccio, G.; De Francesco, R.; Laufer, R.; Rowley, M.; Narjes, F. Potent inhibitors of subgenomic hepatitis C virus RNA replication through optimization of indole-N-acetamide allosteric inhibitors of the viral NS5B polymerase. J. Med. Chem. 2005, 48, 4547-4557.
23. Pierra, C.; Benzaria, S.; Amador, A.; Moussa, A.; Mathieu, S.; Storer, R.; Gosselin, G. NM 283, an efficient prodrug of the potent anti-HCV agent 2''-C-methylcytidine. Nucleos. Nucleot. Nucl. Acids 2005, 24, 767-770.
24. Powers, J. P.; Piper, D. E.; Li, Y.; Mayorga, V.; Anzola, J.; Chen, J. M.; Jaen, J. C.; Lee, G.; Liu, J. Q.; Peterson, M. G.; Tonn, G. R.; Ye, Q. P.; Walker, N. P. C.; Wang, Z. L. SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J. Med. Chem. 2006, 49, 1034-1046.
25. Beaulieu, P. L.; Gillard, J.; Bykowski, D.; Brochu, C.; Dansereau, N.; Duceppe, J. S.; Hache, B.; Jakalian, A.; Lagace, L.; LaPlante, S.; McKercher, G.; Moreau, E.; Perreault, S.; Stammers, T.; Thauvette, L.; Warrington, J.; Kukolj, G. Improved replicon cellular activity of non-nucleoside allosteric inhibitors of HCV NS5B polymerase: From benzimidazole to indole scaffolds. Bioorg. Med. Chem. Lett. 2006, 16, 4987-4993.
26. Yan, S. Q.; Appleby, T.; Larson, G.; Wu, J. Z.; Hamatake, R.; Hong, Z.; Yao, N. H. Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 5888-5891.
27. Yan, S. Q.; Larson, G.; Wu, J. Z.; Appleby, T.; Ding, Y. L.; Hamatake, R.; Hong, Z.; Yao, N. H. Novel thiazolones as HCV NS5B polymerase allosteric inhibitors: Further designs, SAR, and X-ray complex structure. Bioorg. Med. Chem. Lett. 2007, 17, 63-67.
28. Yan, S. Q.; Appleby, T.; Gunic, E.; Shim, J. H.; Tasu, T.; Kim, H.; Rong, F.; Chen, H. M.; Hamatake, R.; Wu, J. Z.; Hong, Z.; Yao, N. H. Isothiazoles as active-site inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett. 2007, 17, 28-33.
29. Beaulieu, P. L. Non-nucleoside allosteric inhibitors of HCV NS5B polymerase: Novel benzimidazole diamide derivatives with replicon activity. Antiviral Res. 2004, 62, A51.
30. Chan, L.; Das, S. K.; Reddy, T. J.; Poisson, C.; Proulx, M.; Pereira, O.; Courchesne, M.; Roy, C.; Wang, W. Y.; Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba, N.; Labrecque, D.; Bethell, R.; Hamel, M.; Courtemanche-Asselin, P.; L''Heureux, L.; David, M.; Nicolas, O.; Brunette, S.; Bilimoria, D.; Bedard, J. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: Sulfonamides. Bioorg. Med. Chem. Lett. 2004, 14, 793-796.
31. Chan, L.; Pereira, O.; Reddy, T. J.; Das, S. K.; Poisson, C.; Courchesne, M.; Proulx, M.; Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba, N.; Roy, C.; Nasturica, D.; Moinet, C.; Bethell, R.; Hamel, M.; L''Heureux, L.; David, M.; Nicolas, O.; Courtemanche-Asselin, P.; Brunette, S.; Bilimoria, D.; Bedard, J. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: Tertiary amides. Bioorg. Med. Chem. Lett. 2004, 14, 797-800.
32. Howe, A. Y. M.; Bloom, J.; Baldick, C. J.; Benetatos, C. A.; Cheng, H. M.; Christensen, J. S.; Chunduru, S. K.; Coburn, G. A.; Feld, B.; Gopalsamy, A.; Gorczyca, W. P.; Herrmann, S.; Johann, S.; Jiang, X. Q.; Kimberland, M. L.; Krisnamurthy, G.; Olson, M.; Orlowski, M.; Swanberg, S.; Thompson, I.; Thorn, M.; Del Vecchio, A.; Young, D. C.; van Zeijl, M.; Ellingboe, J. W.; Upeslacis, J.; Collett, M.; Mansour, T. S.; O''Connell, J. F. Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase. Antimicrob. Agents Chemother. 2004, 48, 4813-4821.
33. Olsen, D. B.; Eldrup, A. B.; Bartholomew, L.; Bhat, B.; Bosserman, M. R.; Ceccacci, A.; Colwell, L. F.; Fay, J. F.; Flores, O. A.; Getty, K. L.; Grobler, J. A.; LaFemina, R. L.; Markel, E. J.; Migliaccio, G.; Prhavc, M.; Stahlhut, M. W.; Tomassini, J. E.; MacCoss, M.; Hazuda, D. J.; Carroll, S. S. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob. Agents Chemother. 2004, 48, 3944-3953.
34. Summa, V.; Petrocchi, A.; Pace, P.; Matassa, V. G.; De Francesco, R.; Altamura, S.; Tomei, L.; Koch, U.; Neuner, P. Discovery of alpha,gamma-diketo acids as potent selective and reversible inhibitors of hepatitis C virus NS5b RNA-dependent RNA polymerase. J. Med. Chem. 2004, 47, 14-17.
35. Pace, P.; Nizi, E.; Pacini, B.; Pesci, S.; Matassa, V.; De Francesco, R.; Altamura, S.; Summa, V. The monoethyl ester of meconic acid is an active site inhibitor of HCV NS5B RNA-dependent RNA polymerase. Bioorg. Med. Chem. Lett. 2004, 14, 3257-3261.
36. Summa, V.; Petrocchi, A.; Matassa, V. G.; Taliani, M.; Laufer, R.; De Francesco, R.; Altamura, S.; Pace, P. HCV NS5b RNA-dependent RNA polymerase inhibitors: From alpha,gamma-diketo acids to 4,5-dihydroxypyrimidine- or 3-methyl-5-hydroxypyrimidinonecarboxylic acids. Design and synthesis. J. Med. Chem. 2004, 47, 5336-5339.
37. Altamura, S.; Tomei, L.; Koch, J. O.; Neuner, P. J. S.; Summa, V. Diketoacid-derivatives as inhibitors of viral polymerases. [Int. Patent Appl. WO 00/06529]. 2000. Istituto di Ricerche di Biologia Molecolare P. Angeletti, SpA.
Ref Type: Patent
38. De, F. R.; Tomei, L.; Altamura, S.; Summa, V.; Migliaccio, G. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res. 2003, 58, 1-16.
39. Sundquist, B.; Oberg, B. Phosphonoformate inhibits reverse transcriptase. J. Gen. Virol. 1979, 45, 273-281.
40. Levin, J. Merck''s New HCV Polymerase Inhibitor Drug Reduces HCV Viral Load by 5.7 Log in 7 Days in Chimps. 15th International HIV Drug Resistance Workshop. 6-14-2006.
Ref Type: Conference Proceeding
41. Bailey; Young, T. R.; Dorothy, C. Methods for treating viral infections. ViroPharma Incorporated. 09/389,265[US 6,440,985 B1]. 8-27-2002. 9-3-1999.
Ref Type: Patent
42. Gazz. chim. Ital. 1935, 65, 38-41.
43. Ebnother, A.; Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; Suess, R.; Vogel, A. Uber Azetidin-2,4-Dione (Malonimide). Helv. Chim. Acta 1959, 42, 918-955.
44. Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P. New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett. 1998, 39, 2933-2936.
45. Heath, P. C.; Huang, C. Q.; Lowe, R. F.; McCarthy, J. R.; Weigel, L. O.; Whitten, J. P. An efficient acylation/base-catalyzed cyclization of thioureas affords N,N''-disubstituted thiobarbituric acids. Tetrahedron Lett. 2001, 42, 1607-1610.
46. Kreutzberger, A.; Leger, M. Synthesis and Anesthetic Activity of Pyrimido[1,2-A]Benzimidazole-2,4-Diones. Arch. Pharm. 1982, 315, 651-653.
47. Bonsignore, L.; Loy, G.; Secci, D. A Convenient Synthesis of New Heterocycles from Benzimidazoles and Carbon Suboxide. J. Heterocycl. Chem. 1992, 29, 1033-1034.
48. Adams, R.; Ulich, L. H. The use of oxalyl chloride and bromide for producing acid chlorides, acid bromides or acid anhydrides. III. J. Am. Chem. Soc. 1920, 42, 599-611.
49. kue-Gedu, R.; Ebrik, S. A.; Witczak-Legrand, A.; Fasseur, D.; El Ghammarti, S.; Couturier, D.; Decroix, B.; Othman, M.; Debacker, M.; Rigo, B. Studies on pyrrolidinones. On the decarboxylation of pyroglutamic acids and N-acyl prolines in acidic media. Tetrahedron 2002, 58, 9239-9247.
50. Hormi, O. E. O.; Peltonen, C.; Bergstrom, R. A one-pot synthesis of coumarins from dipotassium ortho-methoxybenzylidenemalonates. Perkin Trans., 1 1991, 219-221.
51. Binner, J. G. P.; Hassine, N. A.; Cross, T. E. The possible role of the preexponential factor in explaining the increased reaction-rates observed during the microwave synthesis of titanium carbide. J. Mater. Sci. 1995, 30, 5389-5393.
52. Langa, F.; DelaCruz, P.; DelaHoz, A.; DiazOrtiz, A.; DiezBarra, E. Microwave irradiation: more than just a method for accelerating reactions. Contem. Org. Synth. 1997, 4, 373-386.
53. Berlan, J.; Giboreau, P.; Lefeuvre, S.; Marchand, C. Organic-synthesis in microwave field -- 1st example of specific activation under homogeneous conditions. Tetrahedron Lett. 1991, 32, 2363-2366.
54. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis -- a review. Tetrahedron 2001, 57, 9225-9283.
55. Cai, S. X.; Zhou, Z. L.; Huang, J. C.; Whittemore, E. R.; Egbuwoku, Z. O.; Lu, Y. X.; Hawkinson, J. E.; Woodward, R. M.; Weber, E.; Keana, J. F. W. Synthesis and structure-activity relationships of 1,2,3,4-tetrahydroquinoline-2,3,4-trione-3-oximes: Novel and highly potent antagonists for NMDA receptor glycine site. J. Med. Chem. 1996, 39, 3248-3255.
56. Asiri, A. M.; Alamry, K. A.; Jalbout, A. F.; Zhang, S. 1,3-Diethyl-5-(2-methoxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione. Molbank 2004, M359.
57. Kim, J. K.; Kwon, P. S.; Kwon, T. W.; Chung, S. K.; Lee, J. W. Techniques application of microwave irradiation for the Knoevenagel condensation. Synth. Commun. 1996, 26, 535-542.
58. Trost, B. M. Comprehensive Organic Synthesis; 1991; p 341.
59. Tamami, B.; Fadavi, A. Amino group immobilized on polyacrylamide: An efficient heterogeneous catalyst for the Knoevenagel reaction in solvent-free and aqueous media. Catalysis Commun. 2005, 6, 747-751.
60. Texierboullet, F.; Foucaud, A. Knoevenagel condensation catalyzed by aluminum-oxide. Tetrahedron Lett. 1982, 23, 4927-4928.
61. Yamawaki, J.; Kawate, T.; Ando, T.; Hanafusa, T. Potassium fluoride on alumina -- an efficient solid base for elimination, addition, and condensation. Bull. Chem. Soc. Jpn. 1983, 56, 1885-1886.
62. Cabello, J. A.; Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M. AlPO4-supported rhodium catalysts on liquid-phase hydrogenation of CH2=CH-R compounds. Bull. Soc. Chim. Belg. 1984, 93, 857-862.
63. Angeletti, E.; Canepa, C.; Martinetti, G.; Venturello, P. Silica-gel functionalized with amino-groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Lett. 1988, 29, 2261-2264.
64. Moison, H.; Texierboullet, F.; Foucaud, A. Knoevenagel, Wittig and Wittig-Horner reactions in the presence of magnesium-oxide or zinc-oxide. Tetrahedron 1987, 43, 537-542.
65. Saito, T.; Goto, H.; Honda, K.; Fujii, T. Acid-base catalysts derived from weakly acidic ion-exchange resin -- efficiency in the Knoevenagel condensation. Tetrahedron Lett. 1992, 33, 7535-7538.
66. Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Visali, B.; Narsaiah, A. V.; Nagaiah, K. Phosphane-catalyzed Knoevenagel condensation: A facile synthesis of alpha-cyanoacrylates and alpha-cyanoacrylonitriles. Eur. J. Org. Chem. 2004, 546-551.
67. Su, C.; Chen, Z. C.; Zheng, Q. G. Organic reactions in ionic liquids: Knoevenagel condensation catalyzed by ethylenediammonium diacetate. Synthesis (Stuttg.) 2003, 555-559.
68. Ranu, B. C.; Jana, R. Ionic liquid as catalyst and reaction medium - A simple, efficient and green procedure for Knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid. Eur. J. Org. Chem. 2006, 3767-3770.
69. Ebitani, K.; Motokura, K.; Mori, K.; Mizugaki, T.; Kaneda, K. Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water. J. Org. Chem. 2006, 71, 5440-5447.
70. Moradpour, D.; Bieck, E.; Hugle, T.; Wels, W.; Wu, J. Z.; Hong, Z.; Blum, H. E.; Bartenschlager, R. Functional properties of a monoclonal antibody inhibiting the hepatitis C virus RNA-dependent RNA polymerase. J. Biol. Chem. 2002, 277, 593-601.
71. Tedesco, R.; Shaw, A. N.; Bambal, R.; Chai, D. P.; Concha, N. O.; Darcy, M. G.; Dhanak, D.; Fitch, D. M.; Gates, A.; Gerhardt, W. G.; Halegoua, D. L.; Han, C.; Hofmann, G. A.; Johnston, V. K.; Kaura, A. C.; Liu, N. N.; Keenan, R. M.; Lin-Goerke, J.; Sarisky, R. T.; Wiggall, K. J.; Zimmerman, M. N.; Duffy, K. J. 3-(1,1-Dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones, potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem. 2006, 49, 971-983.
72. Gopalsamy, A.; Chopra, R.; Lim, K.; Ciszewski, G.; Shi, M.; Curran, K. J.; Sukits, S. F.; Svenson, K.; Bard, J.; Ellingboe, J. W.; Agarwal, A.; Krishnamurthy, G.; Howe, A. Y. M.; Orlowski, M.; Feld, B.; O''Connell, J.; Mansour, T. S. Discovery of proline sulfonamides as potent and selective hepatitis C virus NS5b polymerase inhibitors. Evidence for a new NS5b polymerase binding. J. Med. Chem. 2006, 49, 3052-3055.
73. Nittoli, T.; Curran, K.; Insaf, S.; DiGrandi, M.; Orlowski, M.; Chopra, R.; Agarwal, A.; Howe, A. Y. M.; Prashad, A.; Floyd, M. B.; Johnson, B.; Sutherland, A.; Wheless, K.; Feld, B.; O''Connell, J.; Mansour, T. S.; Bloom, J. Identification of anthranilic acid derivatives as a novel class of allosteric inhibitors of hepatitis C NS5B polymerase. J. Med. Chem. 2007, 50, 2108-2116.
74. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639-1662.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文