跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林秋君
研究生(外文):Chiu-Chun Lin
論文名稱:檳榔子萃取物對中國倉鼠卵巢細胞之細胞毒性與基因毒性的探討
論文名稱(外文):The cytotoxicity and genotoxicity of areca nut extract to CHO-K1 cells
指導教授:鄭景暉鄭景暉引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:檳榔子萃取物微核細胞質分裂非整倍體細胞週期中心體
外文關鍵詞:Areca nut extractmicronucleuscytokinesisaneuploidycell cyclecentrosome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嚼食檳榔是受歡迎的口腔嗜好之一,估計全球約有二到六億的嚼食人口。流行病學的研究發現嚼食檳榔與口腔癌間具有強烈的關連性。在台灣,檳榔嚼塊通常是由新鮮的檳榔子,紅灰或白灰,再加上荖花或荖葉所組成。許多的研究都指出檳榔子具有致癌性與基因毒性;然而,截至目前為止,對於檳榔子的致癌機轉仍是不完全清楚。從本篇論文中發現隨著濃度與時間的遞增,檳榔子萃取物會抑制CHO-K1 細胞的生長與分裂。經過二十四小時的處理後,濃度高於400μg/ml 的檳榔子萃取物會增加細胞內過氧化氫的含量。從細胞質分裂阻斷之微核分析法中發現檳榔子萃取物會誘導微核的生成且伴隨著細胞內過氧化氫濃度的提升。當以400~800μg/ml 的濃度作用二十四小時,發現會造成細胞週期停滯於G2/M phase;當作用時間拉長,發現檳榔子萃取物會造成細胞死亡。有趣的是,我們還觀察到檳榔子萃取物作用二十四小時後的細胞會出現細胞質分裂缺損,且雙核細胞的比例有明顯增多的現象。相似的濃度下,發現檳榔子萃取物會擾亂 actin filament 的分佈。而抗氧化劑Catalase (2000U/ml)與檳榔子萃取物(800μg/ml)共同作用下的細胞,雙核細胞的生成會受到明顯的抑制,這也意味著檳榔子萃取物所造成的細胞質分裂缺損與活性氧的生成有關。另外,長時間的作用下多倍體,多核或微核細胞之數量有明顯的增多,同時也發現數量異常之中心體。除此之外,我們還發現2mM 之咖啡因會加成檳榔子萃取物之細胞毒性,且可有效的減少多倍體細胞的數量。故從本實驗的結果,我們認為檳榔子萃取物會增加微核頻率,誘導細胞週期停滯於G2/M phase,造成細胞質分裂缺損與多倍體細胞的增多;而這些現象可能與活性氧的生成,actin filament 的異常與中心體的變異有關。
Betel quid (BQ) chewing is the fourth most popular oral habit. There are about 200 - 600 million BQ chewers in the world. Epidemiological evidences have found the strong association between BQ chewing and oral cancer. In Taiwan, BQ consists of fresh areca nut (AN) and lime with or without inflorescence piper betle or betle leaf. Many studies have demonstrated that AN exerts mutagenicity and genotoxicity. However, the precise toxic mechanisms responsible for AN-induced carcinogenesis are not fully clear. In this thesis, we found that AN extract (ANE) inhibited the growth and proliferation of CHO-K1 cells in a concentration- and time-dependent manner. After 24-h of exposure, ANE increased the intracellular H2O2 production at concentrations higher than 400 µg/ml. By using cytokinesis-block micronucleus assay, ANE induced micronuclei formation in CHO-K1 cells, accompanied by an increase in intracellular H2O2. Incubation of CHO-K1 cells with ANE (400~800 µg/ml) for 24-h caused G2/M cell cycle arrest and prolonged exposure to 800 µg/ml of ANE induced cell death. Interestingly, we observed that ANE itself caused cytokinesis failure and increased the frequency of binucleated cells following 24-h exposure. At similar concentrations, ANE induced actin filament disorganization. Co-incubation of cells to catalase (2000 U/ml) and ANE (800 µg/ml) reduced the binucleated cells generation, indicating that ANE-induced cytokinesis failure was associated with ROS production. After prolonged exposure to ANE, the accumulation of hyperploid cells, micronucleated or multinucleated cells were noted concomitantly with centrosome amplification. In addition, we found that co-exposure of cells to caffeine (2 mM) and ANE (800 µg/ml) resulted in additive or synergistic cytotoxicity, accompanied by a decrease in hyperploid cells. In summary, our results suggest that ANE increases micronuclei frequency, induces cell cycle arrest at G2/M phase, causes cytokinesis failure and accumulates hyperploid cells. The events are possibly associated with ROS production, actin filament disorganization and centrosome aberration.
中文摘要---------------------------------------------------------------------I
英文摘要--------------------------------------------------------------------II
目錄-----------------------------------------------------------------------III
圖次-------------------------------------------------------------------------V
附錄-----------------------------------------------------------------------VII

第一章 緒論-----------------------------------------------------------------1
1.1. 口腔黏膜病變與嚼食檳榔間的關係------------------------------------1
1.2. 微核(Micronucleus, MN)----------------------------------------------3
1.3. 細胞質分裂缺損(cytokinesis failure)與癌症形成間的關連性----------------5
1.4. 檳榔子萃取物對細胞週期之影響-------------------------------------7
1.5. 咖啡因對細胞週期與細胞死亡的影響------------------------------9

實驗動機與目的---------------------------------------------------------12

第二章 實驗材料方法-------------------------------13
2.0. 實驗材料與藥品之來源---------------------------------------------13
2.1. 檳榔子之水萃取---------------------------------------------------13
2.2. 細胞株與細胞培養-------------------------------------------------14
2.3. 細胞存活率試驗--------------------------------14
2.3.1. 錐蟲藍排除法(Trypan blue exclusion assay)-------------------14
2.3.2. 細胞群落形成效率分析(Colony formation efficiency, CFE)---------14
2.4.細胞質分裂阻斷之微核分析(Cytokinesis-block micronucleus assay)---------15
2.5.利用流式細胞技術分析細胞內活性氧含量-----------------------------16
2.6. 利用流式細胞儀分析細胞週期之變化---------------------------------17
2.7. 免疫螢光顯微鏡 (Immunofluorescence microscopy)----17
2.7.1. F-actin之染色---------------------------------------------17
2.7.2. γ-tubulin之染色------------------------------------------18
2.8. 統計分析---------------------------------------------------------18

第三章 實驗結果----------------------------------------20
3.1. 檳榔子萃取物與檳榔素會抑制CHO-K1細胞的生長與造成細胞毒性反應--------------------------------------------20
3.1.1. 短期細胞存活率分析~錐蟲藍排除法---------------------------20
3.1.2. 長期細胞存活率分析~細胞群落形成效率分析-------------------20
3.2. 檳榔子萃取物與檳榔素會改變CHO-K1細胞之細胞形態------------------20
3.3. 檳榔子萃取物與檳榔素會造成細胞內活性氧含量的上升-----------------21
3.4. 檳榔子萃取物與檳榔素會誘導微核的生成-----------------------------21
3.5. 檳榔子萃取物與檳榔素對細胞週期的影響-----------------------------23
3.6. 檳榔子萃取物與檳榔素對細胞死亡的影響-----------------------------23
3.7. 檳榔子萃取物會造成細胞質分裂失敗及雙核細胞之生成-----------------24
3.8. 檳榔子萃取物作用下的雙核細胞仍可維持細胞之分裂-------------------25
3.9. 咖啡因會加成檳榔子萃取物對細胞之毒性反應-------------------------26

第四章 討論-------------------------------------------28
4.1. 檳榔子萃取物與檳榔素對細胞生長的影響-----------------------------28
4.2. 檳榔子萃取物與檳榔素會誘導微核的生成-----------------------------29
4.3. 檳榔子萃取物與檳榔素皆會造成細胞週期的停滯-----------------------30
4.4. 檳榔子萃取物會抑制細胞質分裂之進行,造成雙核,多核,多倍體與非整倍體細胞之增多,且伴隨中心體異常現象之發生-------------------------32
4.5. 咖啡因會加成檳榔子萃取物細胞之毒性反應---------------------------35

第五章 總結----------------------------------------------------------------37

參考文獻--------------------------------------------------------------------38

圖次
Fig. 1A. Particles of the aqueous extract of the areca nut----------------------------------------46
Fig. 1B. Procedures for the preparation of the aqueous areca nut extract ---------------------46
Fig. 2A. Effects of ANE and arecoline to CHO-K1 cells on trypan blue dye exclusion test
-----------------------------------------------------------------------------------------------47
Fig. 2B. Cytotoxicity of ANE and arecoline to CHO-K1 cells determined by clonogenic
cell survival assay-------------------------------------------------------------------------48
Fig. 3A. Morphological alterations of CHO-K1 cells following 24h exposure to ANE-----49
Fig. 3B. Morphological alterations of CHO-K1 cells following 24h exposure to arecoline
------------------------------------------------------------------------------------------------50
Fig. 4. Effects of ANE and arecoline on the cellular production of H2O2--------------------51
Fig. 5A. & B. Effects of ANE and arecoline on the micronuclei frequency of CHO-K1 cells
in the CBMN assay-----------------------------------------------------------------------52
Fig. 5C. The morphology of the micronuclei in the binucleated cells-------------------------53
Fig. 5D. Cytokinesis-block proliferation index (CBPI) of ANE/ arecoline-treated
CHO- K1 cells------------------------------------------------------------------------------54
Fig. 5E. Effects of catalase on ANE- or arecoline-induced micronuclei frequency in
binucleated cells---------------------------------------------------------------------------55
Fig. 6A. Effects of ANE on the cell cycle progression of CHO-K1 cells---------------------56
Fig. 6B. Effects of arecoline on the cell cycle progression of CHO-K1 cells----------------57
Fig. 7A. Morphological alterations of CHO-K1 cells following prolonged exposure to
ANE or arecoline--------------------------------------------------------------------------58
Fig. 7B. Effects of ANE on the cell cycle progression of CHO-K1 cells following different
time exposure------------------------------------------------------------------------------59
Fig. 7C. Effects of arecoline on the cell cycle progression of CHO-K1 cells following
different time exposure-------------------------------------------------------------------60
Fig. 8A. Binucleated and multinucleated cells induced by ANE-------------------------------61
Fig. 8B. Photographs of ANE-treated cells by fluorescence staining with rhodaminephalloidin
and DAPI----------------------------------------------------------------------62
Fig. 8C & 8D. The percentage of binucleated cells following 24h exposure to ANE and
arecoline------------------------------------------------------------------------------------63
Fig. 8E. Preventive effects of catalase on the formation of the binucleated cells following
24h exposure of ANE---------------------------------------------------------------------64
Fig. 9. The percentage of hyperploid cells following exposure to ANE and arecoline
-----------------------------------------------------------------------------------------------65
Fig. 10. Photographs of CHO-K1 cells after 24 h treatment with ANE followed by
fluorescence labeling of γ-tubulin with TRITC and of nuclear DNA with DAPI
-----------------------------------------------------------------------------------------------66
Fig. 11A. Morphological alterations of CHO-K1 cells following prolonged exposure to
ANE, caffeine, and the combination of ANE and caffeine -------------------------67
Fig. 11B. Cytotoxicity of ANE enhanced by caffeine---------------------------------------------68
Fig. 11C. Effects of caffeine on ANE-induced cell cycle alterations and cell death in CHOK1
cells-------------------------------------------------------------------------------------69
Fig. 11D. Morphological alterations of CHO-K1 cells following prolonged exposure to
arecoline, caffeine, and the combination of arecoline and caffeine----------------70
Fig. 11E. Effects of caffeine on the cytotoxicity of arecoline to CHO-K1 cells--------------71
Fig. 11F. Effects of caffeine on arecoline-induced cell cycle alterations and cell death-----72

附錄
附錄-1----------------------------------------------------------------------73
附錄-2----------------------------------------------------------------------74
1.Bache M, Dunst J, Wurl P, Frode D, Meye A, Schmidt H, Rath FW, Taubert H. G2/M checkpoint is p53-dependent and independent after irradiation in five human sarcoma cell lines. Anticancer Res. 1999 May-Jun;19(3A):1827-32
2.Bertrand P, Lambert S, Joubert C, Lopez BS. Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells, Oncogene 2003 Oct 23;22(48):7587-92.
3.Bhattathiri VN. Amitotic cell divisions and tumour growth: an alternative model for cell kinetic compartments in solid tumours. Oral Oncol. 2001 Apr;37(3):288-95
4.Blasina A, Price BD, Turenne GA, McGowan CH. Caffeine inhibits the checkpoint kinase ATM. Curr Biol. 1999 Oct 7;9(19):1135-8.
5.Boveri T: The Origin of Malignant Tumors. Baltimore, MD: Williams and Wilkins; 1929.
6.Busse PM, Bose SK, Jones RW, Tolmach LJ The action of caffeine on X-irradiated HeLa cells. II. Synergistic lethality. Radiat Res. 1977 Sep;71(3):666-77.
7.Busse PM, Bose SK, Jones RW, Tolmach LJ. The action of caffeine on X-irradiated HeLa cells. III. Enhancement of X-ray-induced killing during G2 arrest. Radiat Res. 1978 Nov; 76(2): 292-307.
8.Canniff JP, Harvey W, Harris M. Oral submucous fibrosis: its pathogenesis and management. Br. Dent. J., 1986 Jun 21;160(12):429-34.
9.Chae S, Yun C, Um H, Lee JH, Cho H. Centrosome amplification and multinuclear phenotypes are Induced by hydrogen peroxide. Exp Mol Med. 2005 Oct 31;37(5):482-7.
10.Chang MC, Kuo MY, Hahn LJ, Hsieh CC, Lin SK, Jeng JH. Areca nut extract inhibits the growth, attachment, and matrix protein synthesis of cultured human gingival fibroblasts. J Periodontol., 1998 Oct;69(10):1092-7.
11.Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, Wang YJ, Jeng JH. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis. 2001 Sep;22(9):1527-35.
12.Chang MC, Ho YS, Lee JJ, Kok SH, Hahn LJ, Jeng JH. Prevention of the areca nut extract-induced unscheduled DNA synthesis of gingival keratinocytes by vitamin C and thiol compounds. Oral Oncol. 2002 Apr;38(3):258-65.
13.Chen XB, Regan JW. Activation of the human FP prostanoid receptor disrupts mitosis progression and generates aneuploidy and polyploidy. Cell Mol Life Sci. 2006 Jan;63(1):112-21.
14.Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652-6.
15.Cogswell JP, Brown CE, Bisi JE and Neill SD. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ. 2000 Dec;11(12):615-23
16.Dave BJ, Trivedi AH, Adhvaryu SG. Cytogenetic studies reveal increased genomic damage among “pan Masala” consumers. Mutagenesis 1991; 6(2):159-163.
17.Dave BJ, Trivedi AH, Adhvaryu SG. In vitro genotoxic effects of areca nut extract and arecoline. J Cancer Res Clin Oncol 1992; 118(4):283-8. Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrsion C. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J. 2004 Oct 1;23(19):3864-73
18.Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrison C. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J. 2004 Oct 1;23(19):3864-73.
19.Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res. 1985 Feb-Apr;147(1-2):29-36
20.Fenech M, Morley AA. Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation. Mutat Res. 1986 Jul;161(2):193-8
21.Fenech M., The advantages and disadvantages of the cytokinesis-block micronucleus method, Mutat. Res. 1997 Aug 1;392(1-2):11-8.
22.Fenech M., Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov Today. 2002 Nov 15;7(22):1128-37. Review
23.Fingert HJ, Chang JD, Pardee AB. Cytotoxic, cell cycle, and chromosomal effects of methylxanthines in human tumor cells treated with alkylating agents. Cancer Res. 1986 May;46(5):2463-7.
24.Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal amplification of centrosomes and genetic instability in the absenceof p53. Science. 1996 Mar 22;271(5256):1744-7.
25.Fukasawa K, Wiener F, Vande Woude GF, Mai S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene. 1997 Sep;15(11):1295-302.
26.Fukasawa K., Centrosome amplification, chromosome instability and cancer development. Cancer Lett. 2005 Dec 8;230(1):6-19. Review
27.Gisselsson D, Jonson T, Yu C, Martins C, Mandahl N, Wiegant J, Jin Y, Mertens F, Jin C. Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres. Br J Cancer. 2002 Jul 15;87(2):202-7.
28.Goodarzi AA, Jonnalagadda JC, Douglas P et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004; 23: 4451–61.
29.Hickman JA, Boyle CC. Apoptosis and cytotoxins. Br Med Bull. 1997; 53(3), 632–43.
30.Hu T, Miller CM, Ridder GM, Aardema MJ. Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: implications for genotoxicity testing. Mutat Res. 1999 May 3;426(1):51-62.
31.Hutter E, Unterluggauer H, Uberall F, Schramek H, Jansen-Durr P. Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress. Exp Gerontol. 2002 Oct-Nov;37(10-11):1165-74.
32.IARC. (1985) IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans , Vol.37. IARC, Lyon.
33.Jeng JH, Kuo ML, Hahn LJ, Kuo MY. Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res 1994 May;73(5):1043-9.
34.Jeng JH, Hahn LJ, Lin PR, Chan CP, Hsieh CC, Chang MC. Effects of areca nut, Inflorescence piper betle extracts and arecoline on the cytotoxicity, total and unscheduled DNA synthesis of cultured human gingival keratinocytes. J Oral Pathol Med 1999;28:64-71.
35.Jeng JH, Chang MC, Hahn LJ. Roles of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 2001 Sep;37(6):477-92.
36.Jha MN, Bamburg JR, Bernstein BW, Bedford JS. Caffeine eliminates gamma-ray-induced G2-phase delay in human tumor cells but not in normal cells. Radiat Res. 2002 Jan;157(1):26-31.
37.Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304-11.
38.Kaufmann WK, Heffernan TP, Beaulieu LM, Doherty S, Frank AR, Zhou Y, Bryant MF, Zhou T, Luche DD, Nikolaishvili-Feinberg N, Simpson DA, Cordeiro-Stone M. Caffeine and human DNA metabolism: the magic and the mystery. Mutat Res. 2003 Nov 27;532(1-2):85-102.
39.Kirsch-Volders M, Vanhauwaert A, De Boeck M, Decordier I. Importance of detecting numerical versus structural chromosome aberrations. Mutat Res. 2002 Jul 25;504(1-2):137-48. Review
40.Ko YC, Chiang TA, Chang SJ, Hsieh SF. Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med.1992 Jul; 21(6):261- 4.
41.Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med.1995 Nov; 24(10): 450-3.
42.Kwan HW. A statistical study on oral carcinomas in Taiwan with emphasis on the relationship with betel nut chewing: a preliminary report. Taiwan Yi Xue Hui Za Zhi. 1976 Sep;75(9):497-505.
43.Lau CC, Pardee AB. Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci U S A. 1982 May;79(9):2942-6.
44.Lee PH, Chang MC, Chang WH, Wang TM, Wang YJ, Hahn LJ, Ho YS, Lin CY, Jeng JH. Prolonged exposure to arecoline arrested human KB epithelial cell growth: regulatory mechanisms of cell cycle and apoptosis. Toxicology. 2006 Mar 15;220(2-3):81-9.
45.Levi-Schaffer F, Touitou E. Xanthines inhibit 3T3 fibroblast proliferation. Skin Pharmacol. 1991;4(4):286-90.
46.Li JM, Brooks G. Cell cycle regulatory,olecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy?. Eur Heart J.1999 Mar; 20(6): 406–20.
47.Liu TY, Chen CL, Chi CW. Oxidative damage to DNA induced by areca nut extract. Mutat Res. 1996 Jan;367(1):25-31.
48.Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res. 1996 Sep 1;56(17):4006-12.
49.Lu CT, Yen YY, Ho CS, Ko YC, Tsai CC, Lan SJ: A case-control study of oral cancer in Changhua County, Taiwan. Journal of Oral Pathology and Medicine 1996; 25:245-248.
50.Lu SY, Chang KW, Liu CJ, Tseng YH, Lu HH, Lee SY, Lin SC. Ripe areca nut extract induces G1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis. 2006 Jun;27(6):1273-84. Epub 2006 Feb 12.
51.Na HK, Chang CC, Trosko JE. Growth suppression of a tumorigenic rat liver cell line by the anticancer agent, ET-18-O-CH(3), is mediated by inhibition of cytokinesis. Cancer Chemother Pharmacol. 2003 Mar;51(3):209-15.
52.Nabha SM, Mohammad RM, Dandashi MH, Coupaye- Gerard B, Aboukameel A, Pettit GR, Al-Katib AM. Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage. Clin Cancer Res. 2002 Aug;8(8):2735-41.
53.Nair J, Ohshima H, Friesen M, Croisy A, Bhide SV, Bartsch H. Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis. 1985 Feb;6(2):295-303.
54.Nair U, Obe G, Nair J, Maru GB, Bhide SV, Pieper R, Bartsch H: Evaluation of frequency of micronucleated oral mucosa cells as a marker for genotoxic damage in chewers of betel quid with or without tobacco. Mutation Research 1991; 261:163-168.
55.Nair UJ, Floyd RA, Nair J, Bussachini V, Friesen M, Bartsch H. Formation of reactive oxygen species and of 8-hydroxydeoxyguanosine in DNA in vitro with betel quid ingredients. Chem Biol Interact 1987;63(2):157-69.
56.Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M. Depletion of Chk1 leads to premature activation of cdc2-cyclin B and mitotic catastrophe. J Biol Chem 2005; 280: 39 246–52.
57.O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 2003; 33: 497–501.
58.Poot M, Teubert H, Rabinovitch PS, Kavanagh TJ. De novo synthesis of glutathione is required for both entry into and progression through the cell. J Cell Physiol. 1995 Jun;163(3):555-60.
59.Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 1995 Apr 15;55(8):1643-8
60.Rosefort C, Fauth E and Zankl H. Micronuclei induced by aneugens and clastogens in mononucleate and binucleate cells using the cytokinesis block assay. Mutagenesis vol. 19 no. 4 pp. 277-284, July 2004
61.Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res. 1995 Apr 15;55(8):1639-42.
62.Ruth AC, Roninson IB. Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Res. 2000 May 15;60(10):2576-8
63.Sato N, Mizumoto K, Nakamura M, Tanaka M. Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res. 2000 Mar 15;255(2):321-6.
64.Sato, N., Mizumoto, K., Tanaka, M., 2004. Radiation therapy and centrosome anomalies in pancreatic cancer. In: Nigg, E.A. (Ed.), Centrosomes in Development and Disease. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp. 337–352
65.Saunders WS, Shuster M, Huang X, Gharaibeh B, Enyenihi AH, Petersen I, Gollin SM. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc. Natl. Acad. Sci. USA .2000 Jan 4;97(1), 303–308
66.Shackelford RE, Kaufmann WK, Paules RS. Cell cycle control, checkpoint mechanisms and genotoxic stress. Environ Health Perspect. 1999 Feb;107 Suppl 1:5-24. Review.
67.Shackelford R.E., Kaufmann,W.K., Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radical Biol Med. 2000 May 1;28(9):1387–404. Review
68.Sharan RN. Association of betel nut with carcinogenesis. Cancer J. 1996., 9, 13–19.
69.Shi Q, King RW. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature. 2005 Oct 13;437(7061):1038-42.
70.Shiloh Y, Kastan MB. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209–54.
71.Singh B, Vincent L, Berry JA, Multani AS, Lucci A. Cyclooxygenase-2 Expression Induces Genomic Instability in MCF10A Breast Epithelial Cells. J Surg Res. 2007 Apr 6
72.Smith ML , Fornace AJ JR. Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res. 1996 Jun;340(2-3):109-24. Review.
73.Stich HF, Anders F. The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers. Mutat Res 1989 Sep;214(1):47-61.
74.Stukenberg PT: Triggering p53 after cytokinesis failure. J Cell Biol 2004, 165:607-608.
75.Sundqvist K, Liu Y, Nair J, Bartsch H, Arvidson K, Graftstrom RC. Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res. 1989 Oct 1;49(19):5294-8
76.Swanson PE, Carroll SB, Zhang XF, Mackey MA. Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations. Am J Pathol. 1995 Apr;146(4):963-71.
77.Thomas SJ, MacLennan R. Slaked lime and betel nut cancer in Papua New Guinea. Lancet. 1992 Sep 5;340(8819):577-8.
78.Thomas S, Kearsley J. Betel quid and oral cancer: a review. Eur J Cancer B Oral Oncol. 1993 Oct;29B(4):251-5. Review.
79.Tolbert PE, Shy CM, Allen JW: Micronuclei and other nuclear anomalies in Buccal Smears: a field test in snuff users. American Journal of Epidemiology 1991; 134:840-850.
80.Tolbert PE, Shy CM, Allen JW: Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutation Research 1992; 271(1):69-77.
81.Tolmach LJ, Jones RW, Busse PM. The action of caffeine on X-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis. Radiat Res. 1977 Sep;71(3):653-65.
82.Uetake Y, Sluder G: Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J Cell Biol 2004, 165:609-615.
83.Wallace KB, Eells JT, Madeira VM, Cortopassi G, Jones DP. Mitochondria-mediated cell injury. Symposium overview. Fundam Appl Toxicol. 1997 Jul;38(1):23-37.
84.Wong C, Stearns T: Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 2005, 6:6.
85.Zhou BB, Chaturvedi P, Spring K, Scott SP, Johanson RA, Mishra R, Mattern MR, Winkler JD, Khanna KK. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia- mutated kinase activity. J Biol Chem. 2000 Apr 7;275(14):10342-8.
86.Zhu W, Chen Y, Dutta A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol. 2004 Aug;24(16):7140-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊