跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡芳芳
研究生(外文):Fang-Fang Tsai
論文名稱:周期性張力刺激對人類牙周韌帶細胞的膠原蛋白合成及基因表現之調控
論文名稱(外文):Regulation of Collagen Production and Gene Expression by Cyclic Mechanical Stretch in Human Periodontal Cells
指導教授:陳羿貞
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:64
中文關鍵詞:牙周韌帶細胞週期性張力刺激離胺基氧化酶基質金屬蛋白酶膠原蛋白膠原蛋白共價交聯
外文關鍵詞:Periodontal fibroblastscyclic mechanical stretchlysyl oxidasecollagencollagen crosslinkmatrix metalloproteinasesMMPsV TIMPs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
機械力量刺激對於牙周組織的構造維持及生理平衡是一個重要的調控因子,牙周韌帶細胞會感知這些刺激而作出反應,當中包括細胞外間質的改變(主要成分為膠原蛋白)。維持膠原蛋白含量的動態平衡是藉由膠原蛋白的合成、結構的穩定及分解三個方式的協調運作而達成。膠原蛋白在合成之後需要經由共價交聯(crosslink),成為較穩定、不可溶的結構,離胺基氧化酶(lysyl oxidase)為參與此一過程的重要酵素,而膠原蛋白的分解主要是透過基質金屬蛋白酶(matrix metalloproteinase,MMPs)。基質金屬蛋白酶的擷抗者為tissue inhibitor of matrix metalloproteinase (TIMPs),MMPs 與TIMPs之相對活性決定了對基質分解的作用程度。離胺基氧化酶在生物學上扮演著多重的角色,但至今尚無探討其與牙周韌帶細胞膠原蛋白調控相關的研究報告,因此本實驗使用Flexor® cell strain unit施予牙周韌帶細胞3%及10%,頻率0.1赫茲(Hz)的週期性張力,探討機械張力刺激與細胞外基質中膠原蛋白合成、穩定(crosslink)與分解之間的關係,以及離胺基氧化酶、基質金屬蛋白酶所扮演的角色。本實驗結果發現,在受3% 張力24小時、48小時後,與基質合成相關的基因COL-1及LO mRNA表現顯著增加,培養液中膠原蛋白的合成較控制組增加1.1及 2.6倍,離胺基氧化酶的活性則比控制組增加0.6及 2.6倍。 隨著受力時間的增加,細胞的反應也變大,而在刺激消除後48小時則反應變小,且基因的改變與蛋白層級的改變趨勢類似。受10%張力24小時、48小時後,與基質合成相關的基因與蛋白的表現改變不大,3%張力對於調控基質代謝分解的基因(MMP-2、TIMP-1及TIMP-2)影響較小,10%張力則有促進MMP-2基因表現的效果,但其擷抗者TIMP-2的基因表現也有上升情形。根據本實驗的結果,某種程度的機械性張力刺激會使膠原蛋白合成及其相關基因的表現增加,促進人類牙周韌帶細胞的細胞外基質合成,並透過離胺基氧化酶基因與蛋白的活化,使其結構更加穩定。施予細胞張力的時間愈長,細胞的反應似乎愈明顯,但是隨著施力程度增加,細胞的生物反應會有所不同,細胞受力後的反應尚有其他因素控制。細胞對於調控細胞外基質合成與分解的機制相當複雜,了解牙周韌帶細胞對於機械力量刺激的反應,除了有助於了解正常牙周組織生長發育與分化,也可能進一步應用在臨床治療上,例如牙周組織的修復及齒列矯正治療的加速。
Mechanical stimulation is important regulator of structure maintenance and physiological homeostasis in periodontal tissues. Periodontal fibroblasts convert the mechanical signals into various biological responses, including modifying the composition of extracellular matrix(ECM). Collagen is the major ECM component of periodontal fibroblasts and mechanical signals specifically regulate the synthesis and degradation of collagen. After collagen synthesis,crosslink is processed mainly by lysyl oxidase to form more stable, insoluble matrix. The key enzymes involved in degradation of collagen are matrix metalloproteinases (MMPs) family, which interact with tissue inhibitor of matrix metalloproteinases (TIMPs). Lysyl oxidase plays diverse roles in biology, but rare study emphasized on its regulatory effect of collagen level in periodontal cells. The purpose of our study was to investigate the role of this enzyme in the process of collagen synthesis, stabilization and degradation in the periodontal fibroblasts after mechanical stretch. Flexercell® strain unit was used to transmit 0.1Hz, 3% and 10% equibiaxial tensile force to human periodontal fibroblast cultured on 6-well plates with flexible, Type I collagen coated silicone membrane. The biological response was assessed both in mRNA and protein levels. Our results revealed that the expression of COL-1and LO mRNA was up-regulated in the periodontal fibroblasts subjected to 3% cyclic mechanical stretch for 24 hours or 48 hours. The collagen secreted to the medium increased by 1.1 folds and 2.6 folds, and the elevation of lysyl oxidase activity was 0.5 folds and 2.6 folds relative to the control group. These responses diminished after the cells rested for another 48 hours since cessation of the stretch. Compared to 3% stretch, 10% stretch did not produce more significant effect. On the contrary, 10% cyclic stretch did not alter the collagen production and lysyl oxidase activity both in the mRNA and protein levels. After being subjected to 3% mechanical stretch, the mRNA levels of the genes involved in collagen catabolism(MMP-2, TIMP-1, TIMP-2) was not significantly changed in the periodontal fibroblasts. But MMP-2 and TIMP-2 mRNA were up-regulated upon the 10% stretch group. We conclude that cyclic mechanical stretch may enhance production of extracellular matrix in periodontal fibroblast by increasing both gene and protein expression in collagen synthesis. The collagen production is stabilized by the up-regulation in LO mRNA and activation of lysyl oxidase. Since the mechanism of mechanotransduction and regulation in extracellular matrix is complicated, efforts on this field facilitate understanding of the development, differentiation of the periodontium, and the therapeutic potential in the periodontal tissue repair and acceleration of orthodontic tooth movement.
表次目錄…………………………………………………… 111
圖次目錄…………………………………………………… IV
中文摘要 …………………………………………………… Vl
英文摘要 …………………………………………………… Vlll
第一章 引言………………………………………………………………1
一、牙周韌帶的功能………………………………………………………………1
二、牙周韌帶的結構……………………………………………………………... 2
三、機械力量刺激對牙周韌帶結構的影響………………………………………3
四、膠原蛋白的合成………………………………………………………………6
五、膠原蛋白的穩定- Collagen crosslink…………………………………………7
六、膠原蛋白的分解………………………………………………………………10
第二章 實驗目的…………………………………………………………………13
第三章 材料與方法………………………………………………………………14
一、細胞培養…………………………………………………………………..…14
二、張力系統…………………………………………………………………..…14
三、實驗設計…………………………………………………………………..…15
四、膠原蛋白合成之定量……………………………………………………..…15
五、離胺基氧化酶活性測定…………………………………………………..…16
六、半定量-反轉錄-聚合酶連鎖反應…………………………………….…..…17
七、統計分析…………………………………………………………………..…19
第四章 結果…………………………………………………………………………20
一、細胞形態觀察………………………..………………………………………20
二、半定量-反轉錄-聚合酶連鎖反應結果……………………………...………20
三、膠原蛋白合成之定量………………..………………………………………23
四、離胺基氧化酶活性測定…………..…………………………………………24
第五章 討論…………………………………………………………………………25
一、膠原蛋白合成及其相關基因的表現……………………..…………………25
二、離胺基氧化酶基因及其活性的表現……………………..…………………27
三、基質金屬蛋白酶基因的表現……………………………………………..29
四、不同張力大小的結果差異……………………………………..…………31
第六章 結論…………………………………………………………………………33
第七章 未來研究方向………………………………………………………..……34
附錄(圖與表)…………………………………………….…………………………..35
參考文獻…………………………………………………………………….…58
1.Bolcato-Bellemin, A. L., Elkaim, R., et al. (2000). "Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts." Journal of Dental Research 79: 1712-1716.
2.Cawston, T. E. and Wilson, A. J. (2006). "Understanding the role of tissue degrading enzymes and their inhibitors in development and disease." Best Pract Res Clin Rheumatol 20: 983-1002.
3.Chen, C. J., Kang, J., et al. (1997). "Changes in lysyl oxidase activity and calcium content during the healing of tooth extraction wounds." Kaohsiung Journal Medical Science 13: 432-439.
4.Chiba, M. and Mitani, H. (2004). "Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress." Cell Biochemistry and Function 22: 249-256.
5.Derderian, C. A., Bastidas, N., et al. (2005). "Mechanical strain alters gene expression in an in vitro model of hypertrophic scarring." Annals of Plastic Surgery 55: 69-75; discussion 75.
6.Eckes, B., Kessler, D., et al. (1999). "Interactions of fibroblasts with the extracellular matrix: implications for the understanding of fibrosis." Springer Seminars in Immunopathology 21: 415-429.
7.Feres-Filho, E. J., Choi, Y. J., et al. (1995). "Pre- and post-translational regulation of lysyl oxidase by transforming growth factor-beta 1 in osteoblastic MC3T3-E1 cells." Journal of Biological Chemistry 270: 30797-30803.
8.George M. Grant, J. K. C., Belinda Castillo, Robert J. Klebe (1996). "Regulation of matrix metalloproteinases following cellular transformation." Journal of Cellular Physiology 167: 177-183.
9.Gerstenfeld, L. C., Riva, A., et al. (1993). "Post-translational control of collagen fibrillogenesis in mineralizing cultures of chick osteoblasts." Journal of Bone and Mineral Research 8: 1031-1043.
10.Graber, T. M., Ed. (1994). Orthodontics: current principles and techniques.
11.Grinnell, F. (1994). "Fibroblasts, myofibroblasts, and wound contraction." Journal of Cell Biology 124: 401-404.
12.Hamalainen, E. R., Jones, T. A., et al. (1991). "Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 5q23.3-31.2." Genomics 11: 508-516.
13.Hattori, S., Fujisaki, H., et al. (2002). "Real-time zymography and reverse zymography: a method for detecting activities of matrix metalloproteinases and their inhibitors using FITC-labeled collagen and casein as substrates." Analytical Biochemistry 301: 27-34.
14.Hay, E. D., Ed. (1981). Cell biology of extracellular matrix.
15.He, Y., Macarak, E. J., et al. (2004). "Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro." Connective Tissue Research 45: 28-39.
16.Howard, P. S., Kucich, U., et al. (1998). "Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts." Journal of Periodontal Research 33: 500-508.
17.Kagan, H. M. (2000). "Intra- and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis." Acta Tropica 77: 147-152.
18.Kagan, H. M. and Li, W. (2003). "Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell." Journal of Cellular Biochemistry 88: 660-672.
19.Kagan, H. M., Williams, M. A., et al. (1984). "Influence of sequence and charge on the specificity of lysyl oxidase toward protein and synthetic peptide substrates." Journal of Biological Chemistry 259: 11203-11207.
20.Kirschmann, D. A., Seftor, E. A., et al. (2002). "A molecular role for lysyl oxidase in breast cancer invasion." Cancer Research 62: 4478-4483.
21.Kletsas, D., Basdra, E. K., et al. (1998). "Mechanical stress induces DNA synthesis in PDL fibroblasts by a mechanism unrelated to autocrine growth factor action." FEBS Letters 430: 358-362.
22.Lambert, C. A., Colige, A. C., et al. (2001). "Coordinated regulation of procollagens I and III and their post-translational enzymes by dissipation of mechanical tension in human dermal fibroblasts." European Journal of Cell Biology 80: 479-485.
23.Lauer-Fields, J. L., Juska, D., et al. (2002). "Matrix metalloproteinases and collagen catabolism." Biopolymers 66: 19-32.
24.Lazarus, H. M., Cruikshank, W. W., et al. (1995). "Induction of human monocyte motility by lysyl oxidase." Matrix Biology 14: 727-731.
25.Li, P. A., He, Q., et al. (2004). "Up-regulation and altered distribution of lysyl oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis." Brain Research. Molecular Brain Research 120: 115-122.
26.Li, W., Liu, G., et al. (2000). "Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells." Journal of Cellular Biochemistry 78: 550-557.
27.Lohi, J., Lehti, K., et al. (2000). "Structural analysis and promoter characterization of the human membrane-type matrix metalloproteinase-1 (MT1-MMP) gene." Gene 242: 75-86.
28.Mariani, T. J., Trackman, P. C., et al. (1992). "The complete derived amino acid sequence of human lysyl oxidase and assignment of the gene to chromosome 5 (extensive sequence homology with the murine ras recision gene)." Matrix 12: 242-248.
29.Mariotti, A. (1993). The extracellular matrix of the periodontium: dynamic and interactive tissues. 3: 39-63.
30.Matsuda, N., Yokoyama, K., et al. (1998). "Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro." Archives of Oral Biology 43: 987-997.
31.Middleton, J., Jones, M., et al. (1996). "The role of the periodontal ligament in bone modeling: The initial development of a time-dependent finite element model." American Journal of Orthodontics and Dentofacial Orthopedics 109: 155-162.
32.Neidlinger-Wilke, C., Grood, E. S., et al. (2001). "Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates." Journal of Orthopaedic Research 19: 286-293.
33.Nelson, J. M., Diegelmann, R. F., et al. (1988). "Effect of beta-aminopropionitrile and ascorbate on fibroblast migration." Proceedings of the Society for Experimental Biology and Medicine 188: 346-352.
34.Ngan, P., Saito, S., et al. (1990). "The interactive effects of mechanical stress and interleukin-1 beta on prostaglandin E and cyclic AMP production in human periodontal ligament fibroblasts in vitro: comparison with cloned osteoblastic cells of mouse (MC3T3-E1)." Archives of Oral Biology 35: 717-725.
35.Palamakumbura, A. H. and Trackman, P. C. (2002). "A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples." Analytical Biochemistry 300: 245-251.
36.Palmon, A., Roos, H., et al. (2001). "Basic fibroblast growth factor suppresses tropoelastin gene expression in cultured human periodontal fibroblasts." Journal of Periodontal Research 36: 65-70.
37.Redlich, M., Asher Roos, H., et al. (2004). "Expression of tropoelastin in human periodontal ligament fibroblasts after simulation of orthodontic force." Archives of Oral Biology 49: 119-124.
38.Ross, M. H., Ed. (1995). Histology: a text and atlas.
39.Sandy, J. R., Farndale, R. W., et al. (1993). "Recent advances in understanding mechanically induced bone remodeling and their relevance to orthodontic theory and practice." American Journal of Orthodontics and Dentofacial Orthopedics 103: 212-222.
40.Sarasa-Renedo, A. and Chiquet, M. (2005). "Mechanical signals regulating extracellular matrix gene expression in fibroblasts." Scandinavian Journal of Medicine and Science in Sports 15: 223-230.
41.Sasaki, K., Takagi, M., et al. (2007). "Upregulation of matrix metalloproteinase (MMP)-1 and its activator MMP-3 of human osteoblast by uniaxial cyclic stimulation." J Biomed Mater Res B Appl Biomater 80: 491-498.
42.Sternlicht, M. D. and Werb, Z. (2001). "How matrix metalloproteinases regulate cell behavior." Annual Review of Cell and Developmental Biology 17: 463-516.
43.Stocker, W., Grams, F., et al. (1995). "The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases." Protein Science 4: 823-840.
44.Tang, S. S., Trackman, P. C., et al. (1983). "Reaction of aortic lysyl oxidase with beta-aminopropionitrile." Journal of Biological Chemistry 258: 4331-4338.
45.Theilig, C., Bernd, A., et al. (2001). Effects of mechanical force on primary human fibroblasts derived from the gingiva and the periodontal ligament. 80: 1777-1780.
46.Trackman, P. C. (2005). "Diverse biological functions of extracellular collagen processing enzymes." Journal of Cellular Biochemistry 96: 927-937.
47.Trackman, P. C., Zoski, C. G., et al. (1981). "Development of a peroxidase-coupled fluorometric assay for lysyl oxidase." Analytical Biochemistry 113: 336-342.
48.Uzel, M. I., Scott, I. C., et al. (2001). Multiple Bone Morphogenetic Protein 1-related Mammalian Metalloproteinases Process Pro-lysyl Oxidase at the Correct Physiological Site and Control Lysyl Oxidase Activation in Mouse Embryo Fibroblast Cultures. 276: 22537-22543.
49.Wang, J. H., Yang, G., et al. (2005). "Controlling cell responses to cyclic mechanical stretching." Annals of Biomedical Engineering 33: 337-342.
50.Werb, Z. (1997). "ECM and cell surface proteolysis: regulating cellular ecology." Cell 91: 439-442.
51.Yamane, A., Fukui, T., et al. (1997). "In vitro measurement of orthodontic tooth movement in rats given beta-aminopropionitrile or hydrocortisone using a time-lapse videotape recorder." European Journal of Orthodontics 19: 21-28.
52.許文婷 (2004). 利用基因微陣列方法探討牙周韌帶細胞接受機械力量刺激後其基因表現之改變. 臨床牙醫研究所, 國立陽明大學.
53.顧迪璿 (1996). 離胺基氧化酶功能性多型性對口腔鱗狀細胞上皮癌表型影響之探討. 口腔生物研究所, 國立陽明大學.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top