|
1.Notani, K., et al., A case of Sweet''s syndrome (acute febrile neutrophilic dermatosis) with palatal ulceration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000. 89(4): p. 477-9. 2.Sudbo, J., et al., Molecular based treatment of oral cancer. Oral Oncol, 2003. 39(8): p. 749-58. 3.Gupta, P.C., et al., Primary prevention trial of oral cancer in india: a 10-year follow-up study. J Oral Pathol Med, 1992. 21(10): p. 433-9. 4.Ko, Y.C., et al., Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med, 1992. 21(6): p. 261-4. 5.Shiu, M.N., et al., Risk factors for leukoplakia and malignant transformation to oral carcinoma: a leukoplakia cohort in Taiwan. Br J Cancer, 2000. 82(11): p. 1871-4. 6.Vokes, E.E., et al., Head and neck cancer. N Engl J Med, 1993. 328(3): p. 184-94. 7.Gillenwater, A., et al., Expression of galectins in head and neck squamous cell carcinoma. Head Neck, 1996. 18(5): p. 422-32. 8.Dima, V.F., et al., Photodynamic therapy and some clinical applications in oncology. Roum Arch Microbiol Immunol, 2002. 61(3): p. 159-205. 9.Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-7. 10.Henderson, B.W. and T.J. Dougherty, How does photodynamic therapy work? Photochem Photobiol, 1992. 55(1): p. 145-57. 11.Gudgin Dickson, E.F., R.L. Goyan, and R.H. Pottier, New directions in photodynamic therapy. Cell Mol Biol (Noisy-le-grand), 2002. 48(8): p. 939-54. 12.Tsai, T., et al., Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med, 2004. 34(1): p. 62-72. 13.Tsai, J.C., et al., Photodynamic Therapy of oral dysplasia with topical 5-aminolevulinic acid and light-emitting diode array. Lasers Surg Med, 2004. 34(1): p. 18-24. 14.Volanti, C., et al., Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene, 2005. 24(18): p. 2981-91. 15.Hendrickx, N., et al., Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem, 2003. 278(52): p. 52231-9. 16.Frank, J., et al., Ascorbic acid suppresses cell death in rat DS-sarcoma cancer cells induced by 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med, 2006. 40(5): p. 827-36. 17.Karmakar, S., et al., 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett, 2007. 415(3): p. 242-7. 18.Hua, Z., et al., Effectiveness of delta-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res, 1995. 55(8): p. 1723-31. 19.Iinuma, S., et al., A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer, 1994. 70(1): p. 21-8. 20.Akita, Y., et al., Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. Br J Dermatol, 2004. 151(2): p. 472-80. 21.Torres, M. and H.J. Forman, Redox signaling and the MAP kinase pathways. Biofactors, 2003. 17(1-4): p. 287-96. 22.Lee, J.M., Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene, 1998. 17(13): p. 1653-62. 23.Meng, T.C., T. Fukada, and N.K. Tonks, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell, 2002. 9(2): p. 387-99. 24.Brigelius-Flohe, R., et al., Redox events in interleukin-1 signaling. Arch Biochem Biophys, 2004. 423(1): p. 66-73. 25.Feng, L., et al., Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys, 1993. 307(2): p. 361-8. 26.Kosaka, T., et al., Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem, 1994. 221(3): p. 889-97. 27.Bennett, A., et al., Prostaglandin-like material extracted from squamous carcinomas of the head and neck. Br J Cancer, 1980. 41(2): p. 204-8. 28.Bennett, A., et al., Prostaglandins and human lung carcinomas. Br J Cancer, 1982. 46(6): p. 888-93. 29.Jung, T.T., N.T. Berlinger, and S.K. Juhn, Prostaglandins in squamous cell carcinoma of the head and neck: a preliminary study. Laryngoscope, 1985. 95(3): p. 307-12. 30.Sano, H., et al., Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res, 1995. 55(17): p. 3785-9. 31.Eberhart, C.E., et al., Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994. 107(4): p. 1183-8. 32.Goodwin, J.S. and J. Ceuppens, Regulation of the immune response by prostaglandins. J Clin Immunol, 1983. 3(4): p. 295-315. 33.Tsujii, M. and R.N. DuBois, Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell, 1995. 83(3): p. 493-501. 34.Tsujii, M., et al., Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998. 93(5): p. 705-16. 35.Williams, C.S., et al., Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest, 2000. 105(11): p. 1589-94. 36.Neufang, G., et al., Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7629-34. 37.Oshima, M., et al., Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 1996. 87(5): p. 803-9. 38.Bell, R.M. and D.J. Burns, Lipid activation of protein kinase C. J Biol Chem, 1991. 266(8): p. 4661-4. 39.Nishizuka, Y., Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 1992. 258(5082): p. 607-14. 40.Mellor, H. and P.J. Parker, The extended protein kinase C superfamily. Biochem J, 1998. 332 ( Pt 2): p. 281-92. 41.Newton, A.C., Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev, 2001. 101(8): p. 2353-64. 42.Ohno, S. and Y. Nishizuka, Protein kinase C isotypes and their specific functions: prologue. J Biochem (Tokyo), 2002. 132(4): p. 509-11. 43.Koivunen, J., et al., Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res, 2004. 64(16): p. 5693-701. 44.Masur, K., et al., High PKC alpha and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells. Mol Biol Cell, 2001. 12(7): p. 1973-82. 45.Engers, R., et al., Protein kinase C in human renal cell carcinomas: role in invasion and differential isoenzyme expression. Br J Cancer, 2000. 82(5): p. 1063-9. 46.Parsons, M., et al., Site-directed perturbation of protein kinase C- integrin interaction blocks carcinoma cell chemotaxis. Mol Cell Biol, 2002. 22(16): p. 5897-911. 47.Podar, K., et al., Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem, 2002. 277(10): p. 7875-81. 48.Jiang, X.H., et al., Antisense targeting protein kinase C alpha and beta1 inhibits gastric carcinogenesis. Cancer Res, 2004. 64(16): p. 5787-94. 49.Yoshiji, H., et al., Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res, 1999. 59(17): p. 4413-8. 50.Xia, P., et al., Characterization of vascular endothelial growth factor''s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest, 1996. 98(9): p. 2018-26. 51.Johnson, C.L., et al., Regulation of p53 stabilization by DNA damage and protein kinase C. Mol Cancer Ther, 2002. 1(10): p. 861-7. 52.Majumder, P.K., et al., Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem, 2000. 275(29): p. 21793-6. 53.Sun, X., et al., Interaction between protein kinase C delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress. J Biol Chem, 2000. 275(11): p. 7470-3. 54.Matassa, A.A., et al., Inhibition of PKCalpha induces a PKCdelta-dependent apoptotic program in salivary epithelial cells. Cell Death Differ, 2003. 10(3): p. 269-77. 55.Carter, A.B., M.M. Monick, and G.W. Hunninghake, Lipopolysaccharide-induced NF-kappaB activation and cytokine release in human alveolar macrophages is PKC-independent and TK- and PC-PLC-dependent. Am J Respir Cell Mol Biol, 1998. 18(3): p. 384-91. 56.Wu, H.H., et al., Lipoteichoic acid induces prostaglandin E(2) release and cyclooxygenase-2 synthesis in rat cortical neuronal cells: involvement of PKCepsilon and ERK activation. Life Sci, 2006. 79(3): p. 272-80. 57.Exton, J.H., Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta, 1994. 1212(1): p. 26-42. 58.van Dijk, M., et al., Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-zeta. Biochem J, 1997. 323 ( Pt 3): p. 693-9. 59.Donchenko, V., A. Zannetti, and P.M. Baldini, Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes. Biochim Biophys Acta, 1994. 1222(3): p. 492-500. 60.Chen, C., et al., Tumor necrosis factor alpha-induced activation of downstream NF-kappaB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion. Involvement of PKCalpha, tyrosine kinase, and IKK2, but not MAPKs, pathway. Cell Signal, 2001. 13(8): p. 543-53. 61.Zamorano, J., et al., Phosphatidylcholine-specific phospholipase C activity is necessary for the activation of STAT6. J Immunol, 2003. 171(8): p. 4203-9. 62.Sakai, T., et al., Involvement of phosphatidylcholine hydrolysis by phospholipase C in prostaglandin F2alpha-induced 1,2-diacylglycerol formation in osteoblast-like MC3T3-E1 cells. J Bone Miner Metab, 2004. 22(3): p. 198-206. 63.Liu, G.L., et al., Endothelin-1 stimulates hydrolysis of phosphatidylcholine by phospholipases C and D in intact rat mesenteric arteries. J Vasc Res, 1999. 36(1): p. 35-46. 64.Rebecchi, M.J. and S.N. Pentyala, Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev, 2000. 80(4): p. 1291-335. 65.Lopez, I., et al., A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem, 2001. 276(4): p. 2758-65. 66.Song, C., et al., Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem, 2001. 276(4): p. 2752-7. 67.Saunders, C.M., et al., PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development, 2002. 129(15): p. 3533-44. 68.Toker, A., Phosphoinositides and signal transduction. Cell Mol Life Sci, 2002. 59(5): p. 761-79. 69.Pendaries, C., et al., Phosphoinositide signaling disorders in human diseases. FEBS Lett, 2003. 546(1): p. 25-31. 70.D''Santos, C.S., J.H. Clarke, and N. Divecha, Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. Biochim Biophys Acta, 1998. 1436(1-2): p. 201-32. 71.Cocco, L., et al., Nuclear phospholipase C and signaling. Biochim Biophys Acta, 2001. 1530(1): p. 1-14. 72.Divecha, N., et al., Nuclear inositides: inconsistent consistencies. Cell Mol Life Sci, 2000. 57(3): p. 379-93. 73.Tamiya-Koizumi, K., Nuclear lipid metabolism and signaling. J Biochem (Tokyo), 2002. 132(1): p. 13-22. 74.Martelli, A.M., et al., Nuclear inositol lipid signaling and its potential involvement in malignant transformation. Biochim Biophys Acta, 2002. 1603(1): p. 11-7. 75.O''Brien, T.P., et al., Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol, 1990. 10(7): p. 3569-77. 76.Jay, P., et al., The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene, 1997. 14(14): p. 1753-7. 77.Yang, G.P. and L.F. Lau, Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ, 1991. 2(7): p. 351-7. 78.Brigstock, D.R., The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev, 1999. 20(2): p. 189-206. 79.Perbal, B., NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol, 2001. 54(2): p. 57-79. 80.Brigstock, D.R., et al., Proposal for a unified CCN nomenclature. Mol Pathol, 2003. 56(2): p. 127-8. 81.Perbal, B., CCN proteins: multifunctional signalling regulators. Lancet, 2004. 363(9402): p. 62-4. 82.Kireeva, M.L., S.C. Lam, and L.F. Lau, Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem, 1998. 273(5): p. 3090-6. 83.Chen, N., C.C. Chen, and L.F. Lau, Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem, 2000. 275(32): p. 24953-61. 84.Grzeszkiewicz, T.M., et al., CYR61 stimulates human skin fibroblast migration through Integrin alpha vbeta 5 and enhances mitogenesis through integrin alpha vbeta 3, independent of its carboxyl-terminal domain. J Biol Chem, 2001. 276(24): p. 21943-50. 85.Tsai, M.S., et al., Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. Cancer Res, 2000. 60(20): p. 5603-7. 86.Sampath, D., R.C. Winneker, and Z. Zhang, Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17beta-estradiol and overexpression in human breast cancer. Endocrinology, 2001. 142(6): p. 2540-8. 87.Xie, D., et al., Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res, 2004. 64(6): p. 1987-96. 88.Viatour, P., et al., Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci, 2005. 30(1): p. 43-52. 89.Joyce, D., et al., NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev, 2001. 12(1): p. 73-90. 90.Thompson, J.E., et al., I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell, 1995. 80(4): p. 573-82. 91.Kadhim, H.S., T.I. Al-Jeboori, and M.S. Tawfik, Possible role of nuclear factor kappaB detected by in situ hybridization in the pathogenesis of transitional cell carcinoma of the bladder. J Med Liban, 2006. 54(4): p. 196-9. 92.Thanos, D. and T. Maniatis, NF-kappa B: a lesson in family values. Cell, 1995. 80(4): p. 529-32. 93.DiDonato, J., et al., Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol, 1996. 16(4): p. 1295-304. 94.Chen, Z.J., L. Parent, and T. Maniatis, Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell, 1996. 84(6): p. 853-62. 95.Karin, M., Y. Yamamoto, and Q.M. Wang, The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov, 2004. 3(1): p. 17-26. 96.Hoffmann, A. and D. Baltimore, Circuitry of nuclear factor kappaB signaling. Immunol Rev, 2006. 210: p. 171-86. 97.Jia, L.Q., et al., Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog, 1997. 19(4): p. 243-53. 98.Okutani, D., et al., Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol, 2006. 291(2): p. L129-41. 99.Goossens, V., et al., Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A, 1995. 92(18): p. 8115-9. 100.Garcia-Ruiz, C., et al., Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem, 1997. 272(17): p. 11369-77. 101.Corda, S., et al., Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol, 2001. 24(6): p. 762-8. 102.Leitges, M., et al., Knockout of PKC alpha enhances insulin signaling through PI3K. Mol Endocrinol, 2002. 16(4): p. 847-58. 103.Motley, E.D., et al., Protein kinase C inhibits insulin-induced Akt activation in vascular smooth muscle cells. Cell Mol Biol (Noisy-le-grand), 2001. 47(6): p. 1059-62. 104.Gliki, G., C. Wheeler-Jones, and I. Zachary, Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3''-kinase-mediates PKC delta phosphorylation: role of PKC in angiogenesis. Cell Biol Int, 2002. 26(9): p. 751-9. 105.Barragan, M., et al., Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood, 2002. 99(8): p. 2969-76. 106.Chou, M.M., et al., Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol, 1998. 8(19): p. 1069-77. 107.Bauer, B., et al., AKT1/PKBalpha is recruited to lipid rafts and activated downstream of PKC isotypes in CD3-induced T cell signaling. FEBS Lett, 2003. 541(1-3): p. 155-62. 108.Detjen, K.M., et al., Activation of protein kinase Calpha inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. J Cell Sci, 2000. 113 ( Pt 17): p. 3025-35. 109.Gill, P.K., A. Gescher, and T.W. Gant, Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes alpha and theta. Eur J Biochem, 2001. 268(15): p. 4151-7. 110.Zhang, J., et al., Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem, 2004. 279(21): p. 22118-23. 111.Basu, A., M.D. Woolard, and C.L. Johnson, Involvement of protein kinase C-delta in DNA damage-induced apoptosis. Cell Death Differ, 2001. 8(9): p. 899-908. 112.Koivunen, J., V. Aaltonen, and J. Peltonen, Protein kinase C (PKC) family in cancer progression. Cancer Lett, 2006. 235(1): p. 1-10. 113.Liang, Y., et al., Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression. J Biol Chem, 2003. 278(29): p. 27267-77. 114.Lin, M.T., et al., Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res, 2005. 11(16): p. 5809-20. 115. Calzavara, P., et al., Photodynamic therapy: update 2006. Part 1: Photochemistry and photobiology. J Eur Acad Dermatol Venereol, 2007. 21: p. 293-302. 116. Berg, K., et al., Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc, 2005. 218: p.133-47. 117. Corbalan, G., et al., Protein kinase C regulatory domains: the aet od decoding many different signals in membranes. Biochim Biophys Acta, 2006. 1761(7): p. 633-54.
|