跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏彰
研究生(外文):Po-Chang Chen
論文名稱:5-氨基酮戊酸光動力治療誘導第二型環氧化酶表現之調控機轉
論文名稱(外文):5-ALA Photodynamic Therapy induce theUp-regulation of COX-2 in oral cancer cells
指導教授:郭彥彬郭彥彬引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:口腔生物科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:5-氨基酮戊酸光動力治療第二型環氧化酶
外文關鍵詞:5-ALAPhotodynamic TherapyCOX-2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據衛生署癌症登記報告結果指出,口腔癌在台灣男性十大癌症死亡率為第三位。除此之外,口腔癌發生的年增率也有逐年上升的趨勢,是台灣地區癌症發生年增率最高的癌症。光動力治療(photodynamic therapy,PDT)是新興的癌症治療方式,5-胺基酮戊酸光動力治療(5-aminolevulinic acid,ALA) 為新研發的第二代光感藥物(photosensitizer)。 先前我們對口腔癌病變所進行的臨床試驗結果,證實ALA的光動力治療,具有用於口腔癌病變治療的潛力,但ALA光動力治療亦可誘導環氧化酵素-2 (Cyclooxygenase-2, COX-2)的產生,而其作用機轉至今尚未明瞭。 由於COX-2 本身可透過血管生成,細胞增殖及轉移等方式,來促進口腔癌細胞的擴展。 本研究以人類口腔癌細胞株Ca9-22探討ALA光動力治療誘導COX-2產生的可能機制, 以期能藉由瞭解ALA的光動力治療誘導COX-2表現上升的路徑,進而提升光動力治療在臨床疾病治療上的功效。 我們發現, Ca9-22細胞株經ALA光動力治療後,COX-2的蛋白質在刺激後3小時開始上升,6小時達到高峰,9小時之後開始下降,48小時後便降回正常值,而且mRNA的表現也在20分鐘後開始上升,1小時達到高峰,9小時後降回正常值。 而ALA光動力治療可活化PI-PLC/PKCβ/NF-κB, 並發現它們參與ALA光動力治療誘發之COX-2表現。 以PI-PLC, PKC與NF-κB之抑制劑(分別為U-73122, Go6983與Bay 11-7082) 前處理可阻斷ALA光動力治療誘發之COX-2表現。 除了NF-κB外,ALA光動力治療亦增加Cyr61 的分泌,以Cyr61之 shRNA前處理可阻斷ALA光動力治療誘發之COX-2表現。 本論文首次指出ALA光動力治療可經由PI-PLC/PKCβ/NF-κB路徑調控COX-2之表現。 亦首次指出Cyr61在光動力治療誘發COX-2表現的路徑中扮演重要的角色。
Oral cancer is the fourth leading cause of cancer-related deaths in male population in Taiwan. Despite recent advances in radiotherapy and chemotherapy, the survival of patients with oral cancer has not improved significantly. Continued investigation of new chemotherapeutic agents is thus needed. Recently, 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) has been used to treat oral premalignant and malignant lesions with promising results in our clinical trials. However, previous studies showed that PDT induces the expression of proangiogenic factors, such as cyclooxygenase-2 (COX-2), thereby promoting cancer cell regrowth following PDT. In this study, we show ALA-PDT can also increase COX-2 expression. Pretreatment of Ca9-22 cells with specific inhibitors of Phosphatidylinositol-specific phospholipase C (PI-PLC; U-73122), protein kinase C (PKC; Go6983) and NF-κB (Bay 11-7082) inhibited COX-2 induction. In summary, ALA-PDT induces the COX-2 expression through the cascade of PI-PLC/PKCβ/NF-κB. Furthermore, we found ALA-PDT increased the expression of Cyr61. Pretreatment of cells with Cyr61 shRNA inhibited ALA-PDT induced COX-2 expression. To our knowledge, this is the first time to show PDT can induce Cyr61 expression and thereby promoting cancer cell regrowth following PDT.
目錄
口試委員會審定書…………………………………………………………………. I
誌謝…………………………………………………………………………………..II
中文摘要……………………………………………………………………………..III
Abstract………………………………………………………………………………V
第一章 緒論…………………………………………………………………………..1
1-1 口腔癌
1-2 口腔癌的治療
2-1 光動力治療
2-2 5-胺基酮戊酸光動力治療
2-3 ROS and cancer
3-1 環氧化酵素
3-2 COX-2 and Cancer
4-1 訊息傳遞
4-2 Protein kinase C
5-1 Phospholipase C
5-2 Phospholipase C in nucleus
6-1 Cysteine-rich 61
6-2 Cyr61 的功能與在癌症中所扮演的角色
7-1 Nuclear factor-kappa B
第二章 實驗材料與方法...........................................................................................17
2-1、細胞株培養
2-2、光動力治療
2-3、藥物處理
2-4、Transformation
2-5、質體抽取(plasmid extraction)
2-6、質體轉殖(plasmid transfection)
2-7、西方墨點法(Western blotting)
2-8、抗體的使用
2-9、RNA的萃取
2-10、反轉錄(Reverse transcription)
2-11、聚合酶連鎖反應(poly-chain polymerase)
2-12、免疫螢光染色
2-13、分離細胞核和細胞質
2-14、Electrophoretic-Mobility Shift Assay
2-15、Flow cytometry
第三章 研究動機……………………………………………………………………28
第四章 實驗結果……………………………………………………………………29
4-1、口腔癌細胞株Ca9-22在經過5-胺基酮戊酸光動力治療之後,細胞內環氧化酵素-2的蛋白質表現量明顯上升
4-2、ALA光動力治療誘導Ca9-22細胞內COX-2的mRNA表現量上升
4-3、在Ca9-22細胞內ALA光動力治療會誘導光感物質產生ROS
4-4、PKCβ參與ALA光動力治療所誘導Ca9-22細胞株中COX-2表現上升的訊息傳遞路徑
4-5、PI-PLC抑制劑U-73122,會抑制ALA光動力治療所誘導Ca9-22細胞株中COX-2表現上升
4-6、NF-κB參與ALA光動力治療所誘導Ca9-22細胞株中COX-2表現上升
4-7、Cyr61參與ALA光動力治療誘導COX-2表現量上升
第五章 討論................................................................................................................39
第六章 圖與表………………………………………………………………………45
第七章 參考文獻........................................................................................................60
1.Notani, K., et al., A case of Sweet''s syndrome (acute febrile neutrophilic dermatosis) with palatal ulceration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000. 89(4): p. 477-9.
2.Sudbo, J., et al., Molecular based treatment of oral cancer. Oral Oncol, 2003. 39(8): p. 749-58.
3.Gupta, P.C., et al., Primary prevention trial of oral cancer in india: a 10-year follow-up study. J Oral Pathol Med, 1992. 21(10): p. 433-9.
4.Ko, Y.C., et al., Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med, 1992. 21(6): p. 261-4.
5.Shiu, M.N., et al., Risk factors for leukoplakia and malignant transformation to oral carcinoma: a leukoplakia cohort in Taiwan. Br J Cancer, 2000. 82(11): p. 1871-4.
6.Vokes, E.E., et al., Head and neck cancer. N Engl J Med, 1993. 328(3): p. 184-94.
7.Gillenwater, A., et al., Expression of galectins in head and neck squamous cell carcinoma. Head Neck, 1996. 18(5): p. 422-32.
8.Dima, V.F., et al., Photodynamic therapy and some clinical applications in oncology. Roum Arch Microbiol Immunol, 2002. 61(3): p. 159-205.
9.Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-7.
10.Henderson, B.W. and T.J. Dougherty, How does photodynamic therapy work? Photochem Photobiol, 1992. 55(1): p. 145-57.
11.Gudgin Dickson, E.F., R.L. Goyan, and R.H. Pottier, New directions in photodynamic therapy. Cell Mol Biol (Noisy-le-grand), 2002. 48(8): p. 939-54.
12.Tsai, T., et al., Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med, 2004. 34(1): p. 62-72.
13.Tsai, J.C., et al., Photodynamic Therapy of oral dysplasia with topical 5-aminolevulinic acid and light-emitting diode array. Lasers Surg Med, 2004. 34(1): p. 18-24.
14.Volanti, C., et al., Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene, 2005. 24(18): p. 2981-91.
15.Hendrickx, N., et al., Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem, 2003. 278(52): p. 52231-9.
16.Frank, J., et al., Ascorbic acid suppresses cell death in rat DS-sarcoma cancer cells induced by 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med, 2006. 40(5): p. 827-36.
17.Karmakar, S., et al., 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett, 2007. 415(3): p. 242-7.
18.Hua, Z., et al., Effectiveness of delta-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res, 1995. 55(8): p. 1723-31.
19.Iinuma, S., et al., A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer, 1994. 70(1): p. 21-8.
20.Akita, Y., et al., Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. Br J Dermatol, 2004. 151(2): p. 472-80.
21.Torres, M. and H.J. Forman, Redox signaling and the MAP kinase pathways. Biofactors, 2003. 17(1-4): p. 287-96.
22.Lee, J.M., Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene, 1998. 17(13): p. 1653-62.
23.Meng, T.C., T. Fukada, and N.K. Tonks, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell, 2002. 9(2): p. 387-99.
24.Brigelius-Flohe, R., et al., Redox events in interleukin-1 signaling. Arch Biochem Biophys, 2004. 423(1): p. 66-73.
25.Feng, L., et al., Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys, 1993. 307(2): p. 361-8.
26.Kosaka, T., et al., Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem, 1994. 221(3): p. 889-97.
27.Bennett, A., et al., Prostaglandin-like material extracted from squamous carcinomas of the head and neck. Br J Cancer, 1980. 41(2): p. 204-8.
28.Bennett, A., et al., Prostaglandins and human lung carcinomas. Br J Cancer, 1982. 46(6): p. 888-93.
29.Jung, T.T., N.T. Berlinger, and S.K. Juhn, Prostaglandins in squamous cell carcinoma of the head and neck: a preliminary study. Laryngoscope, 1985. 95(3): p. 307-12.
30.Sano, H., et al., Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res, 1995. 55(17): p. 3785-9.
31.Eberhart, C.E., et al., Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994. 107(4): p. 1183-8.
32.Goodwin, J.S. and J. Ceuppens, Regulation of the immune response by prostaglandins. J Clin Immunol, 1983. 3(4): p. 295-315.
33.Tsujii, M. and R.N. DuBois, Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell, 1995. 83(3): p. 493-501.
34.Tsujii, M., et al., Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998. 93(5): p. 705-16.
35.Williams, C.S., et al., Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest, 2000. 105(11): p. 1589-94.
36.Neufang, G., et al., Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7629-34.
37.Oshima, M., et al., Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 1996. 87(5): p. 803-9.
38.Bell, R.M. and D.J. Burns, Lipid activation of protein kinase C. J Biol Chem, 1991. 266(8): p. 4661-4.
39.Nishizuka, Y., Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 1992. 258(5082): p. 607-14.
40.Mellor, H. and P.J. Parker, The extended protein kinase C superfamily. Biochem J, 1998. 332 ( Pt 2): p. 281-92.
41.Newton, A.C., Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev, 2001. 101(8): p. 2353-64.
42.Ohno, S. and Y. Nishizuka, Protein kinase C isotypes and their specific functions: prologue. J Biochem (Tokyo), 2002. 132(4): p. 509-11.
43.Koivunen, J., et al., Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res, 2004. 64(16): p. 5693-701.
44.Masur, K., et al., High PKC alpha and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells. Mol Biol Cell, 2001. 12(7): p. 1973-82.
45.Engers, R., et al., Protein kinase C in human renal cell carcinomas: role in invasion and differential isoenzyme expression. Br J Cancer, 2000. 82(5): p. 1063-9.
46.Parsons, M., et al., Site-directed perturbation of protein kinase C- integrin interaction blocks carcinoma cell chemotaxis. Mol Cell Biol, 2002. 22(16): p. 5897-911.
47.Podar, K., et al., Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem, 2002. 277(10): p. 7875-81.
48.Jiang, X.H., et al., Antisense targeting protein kinase C alpha and beta1 inhibits gastric carcinogenesis. Cancer Res, 2004. 64(16): p. 5787-94.
49.Yoshiji, H., et al., Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res, 1999. 59(17): p. 4413-8.
50.Xia, P., et al., Characterization of vascular endothelial growth factor''s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest, 1996. 98(9): p. 2018-26.
51.Johnson, C.L., et al., Regulation of p53 stabilization by DNA damage and protein kinase C. Mol Cancer Ther, 2002. 1(10): p. 861-7.
52.Majumder, P.K., et al., Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem, 2000. 275(29): p. 21793-6.
53.Sun, X., et al., Interaction between protein kinase C delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress. J Biol Chem, 2000. 275(11): p. 7470-3.
54.Matassa, A.A., et al., Inhibition of PKCalpha induces a PKCdelta-dependent apoptotic program in salivary epithelial cells. Cell Death Differ, 2003. 10(3): p. 269-77.
55.Carter, A.B., M.M. Monick, and G.W. Hunninghake, Lipopolysaccharide-induced NF-kappaB activation and cytokine release in human alveolar macrophages is PKC-independent and TK- and PC-PLC-dependent. Am J Respir Cell Mol Biol, 1998. 18(3): p. 384-91.
56.Wu, H.H., et al., Lipoteichoic acid induces prostaglandin E(2) release and cyclooxygenase-2 synthesis in rat cortical neuronal cells: involvement of PKCepsilon and ERK activation. Life Sci, 2006. 79(3): p. 272-80.
57.Exton, J.H., Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta, 1994. 1212(1): p. 26-42.
58.van Dijk, M., et al., Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-zeta. Biochem J, 1997. 323 ( Pt 3): p. 693-9.
59.Donchenko, V., A. Zannetti, and P.M. Baldini, Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes. Biochim Biophys Acta, 1994. 1222(3): p. 492-500.
60.Chen, C., et al., Tumor necrosis factor alpha-induced activation of downstream NF-kappaB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion. Involvement of PKCalpha, tyrosine kinase, and IKK2, but not MAPKs, pathway. Cell Signal, 2001. 13(8): p. 543-53.
61.Zamorano, J., et al., Phosphatidylcholine-specific phospholipase C activity is necessary for the activation of STAT6. J Immunol, 2003. 171(8): p. 4203-9.
62.Sakai, T., et al., Involvement of phosphatidylcholine hydrolysis by phospholipase C in prostaglandin F2alpha-induced 1,2-diacylglycerol formation in osteoblast-like MC3T3-E1 cells. J Bone Miner Metab, 2004. 22(3): p. 198-206.
63.Liu, G.L., et al., Endothelin-1 stimulates hydrolysis of phosphatidylcholine by phospholipases C and D in intact rat mesenteric arteries. J Vasc Res, 1999. 36(1): p. 35-46.
64.Rebecchi, M.J. and S.N. Pentyala, Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev, 2000. 80(4): p. 1291-335.
65.Lopez, I., et al., A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem, 2001. 276(4): p. 2758-65.
66.Song, C., et al., Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem, 2001. 276(4): p. 2752-7.
67.Saunders, C.M., et al., PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development, 2002. 129(15): p. 3533-44.
68.Toker, A., Phosphoinositides and signal transduction. Cell Mol Life Sci, 2002. 59(5): p. 761-79.
69.Pendaries, C., et al., Phosphoinositide signaling disorders in human diseases. FEBS Lett, 2003. 546(1): p. 25-31.
70.D''Santos, C.S., J.H. Clarke, and N. Divecha, Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. Biochim Biophys Acta, 1998. 1436(1-2): p. 201-32.
71.Cocco, L., et al., Nuclear phospholipase C and signaling. Biochim Biophys Acta, 2001. 1530(1): p. 1-14.
72.Divecha, N., et al., Nuclear inositides: inconsistent consistencies. Cell Mol Life Sci, 2000. 57(3): p. 379-93.
73.Tamiya-Koizumi, K., Nuclear lipid metabolism and signaling. J Biochem (Tokyo), 2002. 132(1): p. 13-22.
74.Martelli, A.M., et al., Nuclear inositol lipid signaling and its potential involvement in malignant transformation. Biochim Biophys Acta, 2002. 1603(1): p. 11-7.
75.O''Brien, T.P., et al., Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol, 1990. 10(7): p. 3569-77.
76.Jay, P., et al., The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene, 1997. 14(14): p. 1753-7.
77.Yang, G.P. and L.F. Lau, Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ, 1991. 2(7): p. 351-7.
78.Brigstock, D.R., The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev, 1999. 20(2): p. 189-206.
79.Perbal, B., NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol, 2001. 54(2): p. 57-79.
80.Brigstock, D.R., et al., Proposal for a unified CCN nomenclature. Mol Pathol, 2003. 56(2): p. 127-8.
81.Perbal, B., CCN proteins: multifunctional signalling regulators. Lancet, 2004. 363(9402): p. 62-4.
82.Kireeva, M.L., S.C. Lam, and L.F. Lau, Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem, 1998. 273(5): p. 3090-6.
83.Chen, N., C.C. Chen, and L.F. Lau, Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem, 2000. 275(32): p. 24953-61.
84.Grzeszkiewicz, T.M., et al., CYR61 stimulates human skin fibroblast migration through Integrin alpha vbeta 5 and enhances mitogenesis through integrin alpha vbeta 3, independent of its carboxyl-terminal domain. J Biol Chem, 2001. 276(24): p. 21943-50.
85.Tsai, M.S., et al., Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. Cancer Res, 2000. 60(20): p. 5603-7.
86.Sampath, D., R.C. Winneker, and Z. Zhang, Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17beta-estradiol and overexpression in human breast cancer. Endocrinology, 2001. 142(6): p. 2540-8.
87.Xie, D., et al., Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res, 2004. 64(6): p. 1987-96.
88.Viatour, P., et al., Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci, 2005. 30(1): p. 43-52.
89.Joyce, D., et al., NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev, 2001. 12(1): p. 73-90.
90.Thompson, J.E., et al., I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell, 1995. 80(4): p. 573-82.
91.Kadhim, H.S., T.I. Al-Jeboori, and M.S. Tawfik, Possible role of nuclear factor kappaB detected by in situ hybridization in the pathogenesis of transitional cell carcinoma of the bladder. J Med Liban, 2006. 54(4): p. 196-9.
92.Thanos, D. and T. Maniatis, NF-kappa B: a lesson in family values. Cell, 1995. 80(4): p. 529-32.
93.DiDonato, J., et al., Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol, 1996. 16(4): p. 1295-304.
94.Chen, Z.J., L. Parent, and T. Maniatis, Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell, 1996. 84(6): p. 853-62.
95.Karin, M., Y. Yamamoto, and Q.M. Wang, The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov, 2004. 3(1): p. 17-26.
96.Hoffmann, A. and D. Baltimore, Circuitry of nuclear factor kappaB signaling. Immunol Rev, 2006. 210: p. 171-86.
97.Jia, L.Q., et al., Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog, 1997. 19(4): p. 243-53.
98.Okutani, D., et al., Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol, 2006. 291(2): p. L129-41.
99.Goossens, V., et al., Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A, 1995. 92(18): p. 8115-9.
100.Garcia-Ruiz, C., et al., Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem, 1997. 272(17): p. 11369-77.
101.Corda, S., et al., Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol, 2001. 24(6): p. 762-8.
102.Leitges, M., et al., Knockout of PKC alpha enhances insulin signaling through PI3K. Mol Endocrinol, 2002. 16(4): p. 847-58.
103.Motley, E.D., et al., Protein kinase C inhibits insulin-induced Akt activation in vascular smooth muscle cells. Cell Mol Biol (Noisy-le-grand), 2001. 47(6): p. 1059-62.
104.Gliki, G., C. Wheeler-Jones, and I. Zachary, Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3''-kinase-mediates PKC delta phosphorylation: role of PKC in angiogenesis. Cell Biol Int, 2002. 26(9): p. 751-9.
105.Barragan, M., et al., Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood, 2002. 99(8): p. 2969-76.
106.Chou, M.M., et al., Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol, 1998. 8(19): p. 1069-77.
107.Bauer, B., et al., AKT1/PKBalpha is recruited to lipid rafts and activated downstream of PKC isotypes in CD3-induced T cell signaling. FEBS Lett, 2003. 541(1-3): p. 155-62.
108.Detjen, K.M., et al., Activation of protein kinase Calpha inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. J Cell Sci, 2000. 113 ( Pt 17): p. 3025-35.
109.Gill, P.K., A. Gescher, and T.W. Gant, Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes alpha and theta. Eur J Biochem, 2001. 268(15): p. 4151-7.
110.Zhang, J., et al., Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem, 2004. 279(21): p. 22118-23.
111.Basu, A., M.D. Woolard, and C.L. Johnson, Involvement of protein kinase C-delta in DNA damage-induced apoptosis. Cell Death Differ, 2001. 8(9): p. 899-908.
112.Koivunen, J., V. Aaltonen, and J. Peltonen, Protein kinase C (PKC) family in cancer progression. Cancer Lett, 2006. 235(1): p. 1-10.
113.Liang, Y., et al., Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression. J Biol Chem, 2003. 278(29): p. 27267-77.
114.Lin, M.T., et al., Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res, 2005. 11(16): p. 5809-20.
115. Calzavara, P., et al., Photodynamic therapy: update 2006. Part 1: Photochemistry and photobiology. J Eur Acad Dermatol Venereol, 2007. 21: p. 293-302.
116. Berg, K., et al., Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc, 2005. 218: p.133-47.
117. Corbalan, G., et al., Protein kinase C regulatory domains: the aet od decoding many different signals in membranes. Biochim Biophys Acta, 2006. 1761(7): p. 633-54.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top