跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昭智
研究生(外文):Chao-Chih Lai
論文名稱:傳染病動態模型來評估集團免疫─以小兒痲痺與手足口病為例
論文名稱(外文):Dynamic Infection model Associated with Herd Immunity ─ Illustrations of Poliomyelitis and Hand-Foot-Mouth Disease
指導教授:陳秀熙陳秀熙引用關係
指導教授(外文):HSIU-HSI CHEN
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:預防醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:232
中文關鍵詞:集團免疫動態模型小兒麻痺手足口病基礎再生數
外文關鍵詞:herd immunitydynamic modelbasic reproductive numberpoliohand-foot-mouth disease
相關次數:
  • 被引用被引用:1
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
疫苗不僅能對接種疫苗者產生直接保護的作用,也對未接種疫苗者產生間接保護的作用,這就是疫苗集團免疫( herd immunity)的效應。過去很多文獻在探討疫苗的成本效益時,大多只考慮到疫苗的直接保護作用,大多忽略蜜月期、蜜月期後流行、流行期後新平衡與平均發病年齡改變等動態變化,以及這些動態變化與間接保護作用等對其成本效益所可能帶來的影響。
本研究建立了一個加入疾病症狀動態變化的傳染病模型,運用從過去小兒麻痺流行的文獻報告與由疾病管制局提供之手足口病的資料,來推估其R0值,並且比較傳統動態模型與新的症狀動態模型,並且藉此來量化集團免疫之效應。
結果新的症狀動態模型與傳統SIR模型,都能成功的估計小兒麻痺的R0值(1.71-24.17),而且結果相去不遠。可是新的症狀模型還能對臨床的併發症做預測,而且能輕易的評估疫苗與隔離等介入措施,對傳染病的影響。新的模型更能在資訊不完全下,因為加入了動態的臨床症狀之觀點,成功的推估手足口病的R0值(1.07-1.67)。而上述這些狀況都不是傳統的傳染病模型可以做到的。
總結,本研究所提出之新的症狀模型,保有傳統動態模型的所有優點,還能對臨床的併發症做預測,更能輕易的評估介入措施對傳染病的影響,並能量化集團免疫的效應。此模型對於經濟效益評估上,比傳統模型更具優勢。所以建議未來建立傳染病模型時,應將症狀的動態變化,放入評估的模型中。
Mass vaccination can protect not only the immunized individual against infection disease but also protect the un-immunized individual. The effect of indirect protection of susceptible is termed herd immunity or herd effect. Herd immunity and herd immunity affect not only the incidence of disease but also the economic analysis of vaccination program. But the effect of herd effect in the study of economic analysis about vaccine program almost was ignored in the past.
Our modified dynamic symptom model was based on not only the dynamic infectious status but also dynamic change of disease with complications. We demonstrated it with illustrations of polio and hand-foot-mouth disease (HFMD). The effective reproductive number (R) of polio was estimated around 1.71-24.17. The effective R of HFMD was estimated around 1.07-1.67.
If there are many uncertainties in emerging diseases like the HFMD with severe symptoms, the simple SIR model isn’t easily applied to this condition. But our modified dynamic symptoms model can easily handle this condition. The modified model is more easily applied to the dynamic economic analysis of the intervention program.
目 錄
論文口試委員審定書……………………………………………. i
誌謝………………………………………………………………. ii
中文摘要…………………………………………………….……. iii 英文摘要…………………………………………………………… iv
第一章、研究動機與目的………………………………………. 1
第一節、研究動機………………………………………………. 1
第二節、研究目的……………………..………………………. 4
第二章、文獻回顧………………………………………………. 5
第一節、集團免疫與集團效應之文獻回顧…………….…….… 5
(一)、定義…….…………………………………………….… 5
(二)、理論…………………………………………………..… 6
1. 流行閾值理論(epidemic threshold)…………….….... 6
(1)群體作用理論(mass action principle)…………..… 6
(2) 流行閾值與基礎再生率(basic reproductive rate)….8
(3)以基礎再生率探討異質性人群之衍生方法…………….…. 9
2. 疫苗集團效應研究法設計與流行病學模型模擬估計法…….. 14
(1)疫苗集團效應研究法設計…………………………….……. 14
(2)流行病學模型模擬估計法…………………………….……. 16
3. 傳染病模型……………………………………………….……. 17
(1)靜態模型(statics)………………………………………. 18
(2)動態模型(dynamics)…………………………….………. 19
4. 二項式連鎖模型(Binominal Chain Model)……….……… 21
(三)、流行病學實例………………………………….………… 24
(四)、疫苗的成本效益評估………………………….………… 29
第二節、小兒痲痺與手足口病的文獻回顧…………….………… 31
(一)、小兒麻痺……………………………………...……..… 31
(二)、手足口病…………………………………….…..…..… 33
第三章、材料與方法…………………………………….….……..39
第一節、資料來源………………………….……………….……..39
(一)、小兒麻痺………………………………………….…..… 39
(二)、腸病毒──手足口病……………..…….…………..… 45
第二節、模型建構…………………………………………………..51
(一)建構臨床症狀的傳染病模型之步驟及要素………………..51
(二)傳染病模型建構....................................53
1.小兒麻痺……………..…………………………………..……..53
(1)簡單模型………………………………….…………………..53
(2)臨床症狀模型……………………………….………………..55
2 手足口病…………………………………………………………..59
(三)動態模型與靜態模型對傳染病介入措施效益評估之差異..63
1. 虛擬情境…………………………………………………….…..63
2. 建立介入措施成本效益評估之模型…………………….……..66
(1)固定人口單一世代…………………………………….……..66
(A)決策靜態模型……………….…………………………..…..66
(B)傳染病靜態模型………………………………….………....67
(C)動態模型…………….….…………………………………...67
(2)動態人口………………….…………………………………..67
(A)靜態模型………….….…………………..…………….…..69
(B)動態模型………….….…………………..………….……..69
(3)異質性動態人口……….………………..……….….……..70
(A)動態模型……….….……………..………………..………..70
(B) 靜態模型……….….……………..……..…………..……..72
(4) 建立評估介入措施-隔離的效益評估模型..….…..………..72
3. 模擬方法……………….….……………..…….....…….…..72
(四)模式驗證………………….….……………..…...………..77
第五章、結果………………….….……………...……..………..78
第一節、小兒麻痺R0的估計……………..…….………..………..79
(一)芝加哥地區……………..……..…………………….……..79
(二)馬歇爾群島……………..……..…………………….……..104
(三)台灣……………..……………..…………………….……..112
(四)荷蘭……………..……..…………………………….……..119
第二節、手足口病R0的估計…..………………………….……....127
第三節、集團免疫對疫苗成本效益之影響……………….……....136
(一) 參數估計…..……..……………...……...….……..136
(二) 情境一:單一出生世代………………….….….……..137
(三) 情境二:動態人群.……………………….…….……..142
(四) 情境三:動態人群……………………….……..……..150
(五) 情境四:異質性動態人群…………………….………..151
(六) 情境五:手足口病-隔離措施………….……………..156
第五章、討論…………………………………………………………157


參考文獻……………………………………………………….…..162
附錄一、小兒麻痺模型之模擬程式…………………………..… 171
附錄二、手足口病模型之模擬程式……………………………… 182
附錄三、成本效益評估模擬程式………………………………… 184
附錄四、Manuscript :Effective Reproductive Number and Herd Immunity:Applications to Poliomyelitis and Hand-foot-mouth Disease…..............................................204
1.World Health Organization. Global polio eradication initiative. [cited 2007 Jan 4]; World Health Organization [Available from: http://www.polioeradication.org.
2.Kew, O.M., et al., Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol, 2005. 59: p. 587-635.
3.Roberts, L., Global health.Polio eradication: is it time to give up? . Science, 2006. 312(5775): p. 832 - 835.
4.PE, F. and G. UK, Global poliomyelitis eradication: status and implications. Lancet, 2007. 369(9570): p. 1321-2.
5.SL, K., Polio--new challenges in 2006. Journal of Clinical Virology, 2006. 36(3): p. 163-165.
6.KM, T. and T. RJ, Eradication versus control for poliomyelitis: an economic analysis. Lancet, 2007. 369(9570): p. 1363-71.
7.Arita, I., M. Nakane, and F. Fenner, Public health: is polio eradication realistic? Science, 2006. 312(5775): p. 852–54.
8.RJ, K.-F., et al., Outbreak of paralytic poliomyelitis, Taiwan. Lancet, 1984. 2(8415): p. 1322-4.
9.TJ, J. and S. R., Herd immunity and herd effect: new insights and definitions. Eur J Epidemiol., 2000. 16(7): p. 601-6.
10.PEM., F., Herd Immunity: History, theory, practise. Epidemiol Rev. , 1993. 15: p. 265-302.
11.WH., H., Epidemic disease in England-the evidence of variability and of persistency of tupe. Lancet 1906. 1: p. 733-9.
12.Dietz, K., Transmission and control of arbovirus disease. Society for Industrial and Applied Mathematics, 1975: p. 104-21.
13.Anderson, R. and R. May, Infectious disease of humans: dynamics and control. 1991: Oxford University Press.
14.RM, A. and M. RM., Immunisation and herd immunity. Lancet, 1990. 335(8690): p. 641-5.
15.RM, A. and M. RM., Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. J Hyg. , 1985. 94: p. 365-436.
16.WJ, E., et al., The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol Infect, 2000. 125(3): p. 635-50.
17.P., M., et al., The pre-vaccination regional epidemiological landscape of measles in Italy: contact patterns, effort needed for eradication, and comparison with other regions of Europe. Popul Health Metr., 2005. 3(1): p. 1.
18.Patriarca, P.A., R.W. Sutter, and P.M. Oostvogel, Outbreak of paralytic poliomyelitis, 1976-1995. The Journal of Infectious Diseases 1997. 175(suppl 1): p. s165-72.
19.MN., K. and F. CP., Matrix models for childhood infections: a Bayesian approach with applications to rubella and mumps. Epidemiol Infect., 2005. 133(6): p. 1009-21.
20.Chowell, G., et al., SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol., 2003. 224(1): p. 1-8.
21.CT, B., et al., Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology, 2005. 16(6): p. 791-801.
22.Choi BC, P.A., A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths. J Epidemiol Community Health, 2003. 57(10): p. 831-5.
23.Leon Arriola, J.M.H., Model parameters and outbreak control for SARS. Emerging infectious disease, 2004. 10(7): p. 1258-1263.
24.Chowell, G., et al., Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland. Vaccine, 2006. 24: p. 6747-50.
25.Mills, C.E., J.M. Robins, and M. Lipsitch, Transmissibility of 1918 pandemic influenza. Nature, 2004. 432: p. 904–906.
26.E, M., et al., The 1918 influenza A epidemic in the city of Sao Paulo, Brazil. Med Hypotheses, 2007. 68(2): p. 442-5.
27.Sertsou, G., et al., Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling. Theor Biol Med Model, 2006. 3(38): p. 1-7.
28.PD, G., M. A, and E. VC, Encouraging prospects for immunization against primary cytomegalovirus infection. Vaccine, 2001. 19(11-12): p. 1356-62.
29.PG, C., et al., Mathematical models of Haemophilus influenzae type b. Epidemiol Infect., 1998. 120(3): p. 281-95.
30.Massad, E., et al., Dengue and the risk of urban yellow fever reintroduction in Sao Paulo State, Brazil. Rev Saude Publica, 2003. 37(4): p. 477-84.
31.MA, S. and B. SM, Uncertainty and sensitivity analysis of the basic reproductive rate. Tuberculosis as an example. Am J Epidemiol, 1997. 145(12): p. 1127-37.
32.Chowell, G., et al., The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol., 2004. 229(1): p. 119-26.
33.DL, S., et al., Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control. PLoS Biol, 2007. 5(3): p. e42.
34.DAVIDSON, G., Further studies of the basic factors concerned in the transmission of malaria. Trans R Soc Trop Med Hyg., 1955. 49(4): p. 339-50.
35.Davidson, G. and C.C. Draper, Field studies on some of the basic factors concerned in the transmission of malaria. Trans R Soc Trop Med Hyg., 1953. 47: p. 522–535.
36.TR, B., et al., Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: sporozoite rates, inoculation rates, and sporozoite densities. Am J Trop Med Hyg, 1988. 39(2): p. 135-44.
37.Hagmann, R., et al., Malaria and its possible control on the island of Principe. Malar J, 2003. 2: p. 15.
38.ME, W., et al., Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A, 1997. 94(1): p. 338-42.
39.JJ, P., et al., Chlamydia transmission: concurrency, reproduction number, and the epidemic trajectory. Am J Epidemiol, 1999. 150(12): p. 1331-9.
40.RH, G., et al., Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission; Rakai, Uganda. AIDS, 2003. 17(13): p. 1941–1951.
41.Bacaer, N., X. Abdurahman, and J. Ye, Modeling the HIV/AIDS epidemic among injecting drug users and sex workers in Kunming, China. Bull Math Biol, 2006. 68(3): p. 525-50.
42.Fenner, F., Nature, nurture and my experience with smallpox eradication. The Medical Journal of Australia, 1999. 171: p. 638-41.
43.JM, H., S. RJ, and W. LM, Perspectives on the basic reproductive ratio. J R Soc Interface, 2005. 2(4): p. 281-93.
44.ME, H., S. CJ, and L. IM, Study designs for evaluating different efficacy and effectiveness aspects of vaccination. American Journal of Epidemiology, 1997. 146: p. 789–803.
45.ME., H., L. IM, and S. CJ, Estimability and interpretation of vaccine efficacy using frailty mixing models. American Journal of Epidemiology, 1996. 144: p. 83–97.
46.IM, L., H. ME, and N. A, Model-based estimation of vaccine effects from community vaccine trials. Statistics in Medicine, 2002. 21: p. 481-495.
47.IM, L., et al., Optimal vaccine trial design when estimating vaccine efficacy for susceptibility and infectiousness from multiple populations. Statistics in Medicine, 1998. 17: p. 1121–1136.
48.Niels. G. Becker, Analysis of Infectious Disease Data. 1989, New York: Chapman & Hall.
49.WH, F., Some conceptions on epidemics in general. Am J Epidemiol, 1976. 103: p. 141-51.
50.Samandari, T., B.P. Bell, and G.L. Armstrong, Quantifying the impact of hepatitis A immunization in the United States, 1995-2001. Vaccine, 2004. 22(31-32): p. 4342-50.
51.Raymond, G. and L. Steve, Transmission potential of smallpox in contemporary populations. NATURE, 2001. 414(13): p. 748-751
52.Chen, R.T., et al., Seroprevalence of antibody against poliovirus in inner-city preschool children. JAMA, 1996. 275(54): p. 1639-1645.
53.TL, S., et al., Measles herd immunity. The association of attack rates with immunization rates in preschool children. JAMA, 1992. 268(6): p. 789-90.
54.Wallinga, J., J.C. Heijne, and M. Kretzschmar, A measles epidemic threshold in a highly vaccinated population. PLoS Med., 2005. 2(11): p. e316.
55.VA, J., et al., Measles outbreaks in a population with declining vaccine uptake. Science, 2003. 301(5634): p. 804.
56.De Serres, G., N.J. Gay, and C.P. Farrington, Epidemiology of transmissible diseases after elimination. Am J Epidemiol 2000. 151(11): p. 1049-52.
57.Daniel R. Freikin, D.C.L., Richard F. Hamman, etc, Individual and Community Risks of Measles and Pertussis Associated With Personal Exemptions to Immunization. JAMA, 2000. 284(24): p. 3145-3150.
58.Nielsen, A. and S.O. Larsen, Links Epidemiology of pertussis in Denmark: the impact of herd immunity. Int J Epidemiol, 1994. 23(6): p. 1300-8.
59.MP, P., et al., Epidemiology of pertussis in a West African community before and after introduction of a widespread vaccination program. Am J Epidemiol, 2002. 155(10): p. 891-6.
60.Klock, L.E. and G.S. Rachelefsky, Failure of rubella herd immunity during an epidemic. N Engl J Med., 1973. 228(2): p. 69-72.
61.RM, A., C. JA, and G. BT, The epidemiology of mumps in the UK: a preliminary study of virus transmission, herd immunity and the potential impact of immunization. Epidemiol Infect., 1987. 99(1): p. 65-84.
62.AS, M., et al., Effect of vaccination of a school-age population upon the course of an A2/Hong Kong influenza epidemic. Bull Wld Hlth, 1969. 41: p. 537–42.
63.Warburton, M., et al., Herd immunity following subunit influenza vaccine administration. Med J, 1972. 2: p. 67–70.
64.LG, R., et al., Efficacy of live attenuated and inactivated influenza vaccines in schoolchildren and their unvaccinated contacts in Novgorod Russia. J Infect Dis. , 1993. 168(4): p. 881–7.
65.ES, H., et al., Effectiveness of influenza vaccination of day care children in reducing influenzarelated morbidity among household contacts. JAMA, 2000. 284: p. 1677–82.
66.YZ, G., K. AN, and E. GA, The effect of mass influenza immunization in children on the morbidity of the unvaccinated elderly. Epidemiol Infect., 2006. 134: p. 71–8.
67.Reichert, T.A., et al., The Japanese esperience with vaccinating schoolchildren against influenza. N Engl J Med., 2001. 344: p. 889–96.
68.WP, G., Herd protection against influenza. J Clin Virol, 2006. 37(4): p. 237-43.
69.LR, E., et al., An influenza simulation model for immunization studies. Am J Epidemiol, 1976. 103: p. 152-65.
70.IM, L., A. E, and E. LR, An optimization model for influenza A epidemics. Math Biosci, 1978. 38: p. 141-57.
71.Longini, I.M.J., et al., Statistical inference for infectious diseases: risk-specific household and community transmission parameters. Am J Epidemiol, 1988. 128: p. 845-59.
72.Boni, M.F., et al., Influenza drift and epidemic size: the race between generating and escaping immunity. Theoretical Population Biology 2004. 65(2): p. 179-191
73.DA, C., et al., Partial uptake of varicella vaccine and the epidemiological effect on varicella disease in 11 day-care centers in North Carolina. Arch Pediatr Adolesc Med, 2001. 155: p. 455-461.
74.Moulton, L.H., et al., Estimation of the indirect effect of Haemophilus influenzae type b conjugate vaccine in an American Indian population. International Journal of Epidemiology 2000. 29: p. 753–756.
75.Loek van Alphen PhD, L.S.M., PhD ,Arie van der Ende PhD, Ilse Schuurman MSc, Jacob Dankert MD, PhD, Effect of nationwide vaccination of 3-month-old infants in The Netherlands with conjugate Haemophilus influenzae type b vaccine: High efficacy and lack of herd immunity. Journal of Pediatrics, 1997. 131(6): p. 869-73.
76.CDC, Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease--United States, 1998-2003. MMWR Morb Mortal Wkly Rep., 2005. 54(36): p. 893-7.
77.KL, O.B. and D. R., The potential indirect effect of conjugate pneumococcal vaccines. Vaccine, 2003. 21(17): p. 1815-25.
78.DM, M., Pneumococcal vaccine--direct and indirect ("herd") effects. N Engl J Med., 2006. 354(14): p. 1522-4.
79.ME, R., et al., Herd immunity from meningococcal serogroup C conjugate vaccination in England. BMJ, 2003. 326: p. 365–366.
80.PJ, R. and C. PV., The role of herd immunity in an epidemic cycle of hepatitis A. J Infect., 1992. 24(3): p. 327-31.
81.Ali, M., et al., Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet, 2005. 366(9479): p. 44-9.
82.Emch, M., et al., Relationship between neighbourhood-level killed oral cholera vaccine coverage and protective efficacy: evidence for herd immunity. Int J Epidemiol, 2006. 35(4): p. 1044-50.
83.Starr, J.M., T.R. Rogers, and M. lmpallomeni, Hospital-acquired Clostridium difficile diarrhea and herd immunityThe lancet. Lancet. , 1997. 349(9049): p. 426-8.
84.Geoffrey, P.G., Role of Herd Immunity in Determining the Effect of Vaccines against Sexually Transmitted Disease. J Infect Dis. , 2005. 191(Suppl 1): p. S97-106.
85.Garnett, G.P., et al., The potential epidemiological impact of a genital herpes vaccine for women. Sex Transm Infect 2004. 80(1): p. 24–29.
86.Michael, E. and D.A.P. Bundy, Herd immunity to filarial infection is a function of vector biting rate. Proc Biol Sci., 1998. 265(1399): p. 855-860.
87.Brisson, M. and W.J. Edmunds, Economic evaluation of vaccination programs: the impact of herd-immunity. Medical Decision Making, 2003. 23(1): p. 76-82
88.WJ, E., M. G.F, and N. D.J, Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Statist. Med., 1999. 18(23): p. 3263-3282.
89.CL, T. and E. WJ, Reassessing the cost-effectiveness of meningococcal serogroup C conjugate (MCC) vaccines using a transmission dynamic model. Medical Decision Making, 2006. 26(1): p. 38-47.
90.GT, R., et al., Cost-effectiveness of pneumococcal conjugate vaccine: evidence from the first 5 years of use in the United States incorporating herd effects. Pediatric Infectious Disease Journal, 2006. 25(6): p. 494-501.
91.ED, M., et al., Pneumococcal pneumonia in the UK--how herd immunity affects the cost-effectiveness of 7-valent pneumococcal conjugate vaccine (PCV). Vaccine, 2005. 23(14): p. 1739-45.
92.JJ, C., et al., Pertussis immunization of adolescents in the United States: an economic evaluation. Pediatr Infect Dis J, 2005. 24(5 Suppl): p. S75-82.
93.GM, L., et al., Cost effectiveness of pertussis vaccination in adults. American Journal of Preventive Medicine, 2007. 32(3): p. 186-193.
94.GL, A., et al., The economics of routine childhood hepatitis A immunization in the United States: the impact of herd immunity. Pediatrics, 2007. 119(1): p. e22-9.
95.Lenne, X., et al., Economic evaluation of varicella vaccination in Spain: results from a dynamic model. Vaccine, 2006. 24(47-48): p. 6980-9.
96.Muir, P., et al., Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clin Microbiol Rev., 1998. 11(1): p. 202-27.
97.Nathanson, N. and J.R. Martin, The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1979. 110(6): p. 672–92.
98.DR, P., et al., Poliomyelitis prevention in the United States. Updated recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recommendations and Reports, 2000. 49(RR-5): p. 1-22.
99.Atkinson, W., et al., Epidemiology and Prevention of Vaccine-Preventable Diseases 10th ed. 2007, Washington DC: Public Health Foundation.ISBN.
100.David L. Heymann, M., Control of communicable disease manual. 18th ed. 2004: American Public Health Association.
101.NEAL, N., et al., Epidemic poliomyelitis during 1956 in Chicago and Cook County, Illinois American Journal of Epidemiology, 1959. 70(2): p. 107-168.
102.World Health Organization, Expanding contributions of the Global Laboratory Network for Poliomyelitis Eradication. Wkly Epidemiol Rec., 2002. 77: p. 133–7.
103.PE, F. and C. IA, Transmissibility and persistence of oral poliovirus vaccine viruses: implications for the Global Poliomyelitis Eradication Initiative. Am J Epidemiol, 1999. 150(10): p. 1001–21.
104.Eichner, M. and K.P. Hadeler, Deterministic models for the eradication of poliomyelitis: vaccination with the inactivated (IPV) and attenuated (OPV) polio virus vaccine. Math Biosci., 1995. 127(2): p. 149–66.
105.Eichner, M. and K. Dietz, Eradication of poliomyelitis: when can one be sure that polio virus transmission has been terminated? American Journal of Epidemiology 1996. 143(8): p. 816–22.
106.RJ, D.T., et al., A dynamic model of poliomyelitis outbreaks: learning from the past to help inform the future. Am J Epidemiol, 2005. 162(4): p. 358-72.
107.Kushner D, C.B., Hand-foot-and-mouth disease. J Am Podiatr Med Assoc, 1996. 86(6): p. 257-9.
108.JL., M., Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses 3rd ed. Field''s virology, ed. K.D. Fields BN, Howley PM, Chanlock RM, Melnick JL, Monath TP, et al. 1996: Philadelphia: Lippincott-Raven Publishers. 655–712.
109.Apisarnthanarak, A., et al., Echovirus type 11: outbreak of hand-foot-and-mouth disease in a Thai hospital nursery. Clin Infect Dis. , 2005. 41(9): p. 1361-2.
110.LC, L., et al., Echovirus 7 associated encephalomyelitis. J Clin Virol, 2002. 23(3): p. 153-60.
111.KT, G., et al., An outbreak of hand, foot, and mouth disease in Singapore. Bull World Health Organ, 1982. 60(6): p. 965-9.
112.GL, G., et al., Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr Infect Dis J, 1988. 7(7): p. 484-8.
113.Chang, L.Y., et al., Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. JAMA, 2004. 291(2): p. 222-7.
114.LY, C., et al., Comparison of enterovirus 71 and coxsackievirus A16 clinical illnesses during the Taiwan enterovirus epidemic, 1998. Pediatr Infect Dis J. , 1999. 18(12): p. 1092-6.
115.CC, L., et al., An outbreak of enterovirus 71 infection in Taiwan, 1998: epidemiologic and clinical manifestations. J Clin Virol 2000. 17(1): p. 23-30.
116.Ho, M., Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect., 2000. 33(4): p. 205-16.
117.Blomberg, J., et al., New enterovirus type associated with epidemic of aseptic meningitis and/or hand, foot, and mouth disease. Lancet. , 1974. 2(7872): p. 112.
118.Miwa, C., et al., Epidemic of hand, foot and mouth disease in Gifu Prefecture in 1978. Jpn J Med Sci Biol, 1980 33(3): p. 167-80.
119.Itagaki, A., et al., A clustering outbreak of hand, foot, and mouth disease caused by Coxsackie virus A10. Microbiol Immunol, 1983. 27(11): p. 929-35.
120.World Health Organization, Outbreak of hand, foot and mouth disease in Sarawak: cluster of deaths among infants and young children. Wkly Epidemiol Rec., 1997. 72(28): p. 211-2.
121.LG, C., et al., Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: clinical and pathological characteristics of the diseaseFor the Outbreak Study Group. Clin Infect Dis, 2000. 31(3): p. 678-83.
122.Podin, Y., et al., Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: lessons from the first 7 years. BMC Public Health, 2006. 6: p. 180.
123.Monto Ho, M.D., et al., An epidemic of enterovirus 71 infection in Taiwan. . N Engl J Med., 1999. 341(13): p. 929-935.
124.VA, S., et al., Clinical characteristics of an outbreak of hand, foot and mouth disease in Singapore. Ann Acad Med Singapore, 2003. 32(3): p. 381-7.
125.Sasidharan CK, S.P., Agarwal R, Khare S, Lal S, Jayaram Paniker CK, Hand-foot-and-mouth disease in Calicut. Indian J Pediatr., 2005. 74: p. 17-21.
126.Shimizu, H., K. Okuyama, and Y. Hirai, Epidemic of hand, foot and mouth disease in Kawasaki City. Jpn J Infect Dis, 2005 58(5): p. 330-1.
127.NJ, S., L. EH, and H. HH, An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis., 1974. 129(3): p. 304-9.
128.KP, C., et al., Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis., 2003. 9(1): p. 78-85.
129.TY, L., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis., 2003. 9(3): p. 291-3.
130.李祥吉, et al., 1998∼2004 年台灣地區腸病毒流行血清型別之分析. 疫情報導, 中華民國94年. 21(2): p. 96-120.
131.HN, B., et al., Preliminary report and observations on the 1956 poliomyelitis outbreak in Chicago; with an evaluation of the large-scale use of Salk vaccine, particularly in the face of a sharply rising incidence. J Am Med Assoc, 1957. 163(17): p. 1604-19.
132.CR, P., et al., Poliomyelitis in an isolated population: report of a type 1 epidemic in the Marshall Islands, 1963. Am J Epidemiol, 1965. 80(3): p. 273-96.
133.PM, O., et al., Poliomyelitis outbreak in an unvaccinated community in The Netherlands, 1992-93. Lancet, 1994 344(8923): p. 665-70.
134.Heffernan JM, Smith RJ, and W. LM., Perspectives on the basic reproductive ratio. J R Soc Interface, 2005. 2(4): p. 281-93.
135.Driessche, P.v.d. and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 2002. 180: p. 29-48.
136.van den Driessche, P. and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci., 2002. 180: p. 29-48.
137.Diekmann, O. and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. 2000, New York: Wiley.
138.畢柳鶯 and 連倚南, 全民健保制度與復健醫療發展-以台灣中區為例看復健醫療分布與其走向 中華復建醫誌, 1997. 25(1): p. 65-72.
139.鄧復旦, et al., 復健科住院實施論病例計酬支付制度之初探. 中華民國復健醫學會雜誌, 2000. 28(2): p. 77-85.
140.Population Division, U.N., ,. World population prospects population database: the 2006 revision population database. [cited 2006 June]; Available from: http://esa.un.org/unpp/index.asp?panel=2.
141.行政院衛生署, 衛生統計. 中華民國七十一年.
142.行政院衛生署, 衛生統計. 2006.
143行政院衛生署,衛生統計.華民國七十一年.
144行政院衛生署,衛生統計.006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top