跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁希拉
研究生(外文):Sheila Mae C. Ang
論文名稱:質子交換膜燃料電池靈敏度分析與操作參數最適化
論文名稱(外文):Sensitivity Analysis and Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell
指導教授:周宜雄周宜雄引用關係
指導教授(外文):Yi-Shyong Chou
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:230
中文關鍵詞:質子交換膜燃料電池
外文關鍵詞:PEM fuel celloptimizationnonlinear programmingsensitivity analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
A one-dimensional, nonisothermal model of PEM fuel cell which describes mass, heat and electrochemical phenomena and takes into account the multiphase presence of water in the flow channels, was investigated. Sensitivity analysis was conducted with respect to eleven parameters whose value assignment seemed essential for best simulation results. The MATLAB subroutine sens_sys was used to obtain the absolute and relative sensitivities, and the parameters with significant influence on the model were identified. Model-based optimization was performed with the objective of maximizing the power density subject to constraints. Eight design variables, which have strong influence on the power density, were selected as the design/decision variables. The nature of the optimization problem was explored using the powerful graphical capability of MATLAB. Strong nonlinearity observed in the graphical solution encouraged the use of nonlinear programming as the optimization scheme to determine the best solution for selected process constraints. Optimization results, which were presented as function of average current density, showed high value of average power density and satisfaction of the imposed side and physical constraints suggesting that optimality and feasibility of the design have been achieved.
A one-dimensional, nonisothermal model of PEM fuel cell which describes mass, heat and electrochemical phenomena and takes into account the multiphase presence of water in the flow channels, was investigated. Sensitivity analysis was conducted with respect to eleven parameters whose value assignment seemed essential for best simulation results. The MATLAB subroutine sens_sys was used to obtain the absolute and relative sensitivities, and the parameters with significant influence on the model were identified. Model-based optimization was performed with the objective of maximizing the power density subject to constraints. Eight design variables, which have strong influence on the power density, were selected as the design/decision variables. The nature of the optimization problem was explored using the powerful graphical capability of MATLAB. Strong nonlinearity observed in the graphical solution encouraged the use of nonlinear programming as the optimization scheme to determine the best solution for selected process constraints. Optimization results, which were presented as function of average current density, showed high value of average power density and satisfaction of the imposed side and physical constraints suggesting that optimality and feasibility of the design have been achieved.
Table of Contents
ABSTRACT…………………………………………………………………………….…i
ACKNOWLEDGEMENTS……………………………………………………………..ii
TABLE OF CONTENTS……………………………………………………………….iii
LIST OF FIGURES ……………………………………………………………………vii
LIST OF TABLES…………………………………………………………..................xiv
CHAPTER 1 INTRODUCTION……………………………………………………….1
1.1 BRIEF HISTORY OF FUEL CELLS……………………………………………3
1.2 TYPES OF FUEL CELLS……………………………………………………….5
1.2.1 Polymer Electrolyte Membrane………………………………………....6
1.2.2 Phosphoric Acid…………………………………………………………7
1.2.3 Direct Methanol………………………………………………………….8
1.2.4 Alkaline………………………………………………………………….8
1.2.5 Molten Carbonate………………………………………………………..9
1.2.6 Solid Oxide……………………………………………………………..10
1.2.7 Regenerative (Reversible)……………………………………………...12
1.3 FUEL CELL PERFORMANCE………………………………………………...15
1.3.1 Basic Principles………………………………………………………...15
1.3.2 Electrochemistry of a Fuel Cell………………………………………...16
1.3.3 Ideal Performance of a Fuel Cell……………………………………….17
1.3.4 Actual Performance…………………………………………………….19
1.3.5 Cell Efficiency………………………………………………………….22
1.4 PEM FUEL CELL………………………………………………………………23
1.4.1 Physical Structure and Operating Principle of a PEMFC……………...24
1.5 WATER MANAGEMENT IN PEM FUEL CELL……………………………..26
1.6 THERMAL MANAGEMENT IN PEM FUEL CELL………………………….27
1.7 RESEARCH OBJECTIVE……………………………………………………...29
1.8 RESEARCH MOTIVATION…………………………………………………...31
1.9 THESIS OUTLINE……………………………………………………………..33
1.10 NOMENCLATURE…………………………………………………………...35
1.11 REFERENCES………………………………………………………………....36
CHAPTER 2 LITERATURE REVIEW………………………………………………37
2.1 STATE OF THE ART…………………………………………………………..37
2.2 SURVEY OF THE EXISTING PEM FUEL CELL LITERATURE…………...39
2.2.1 Flow Channels Modeling………………………………………………...39
2.2.2 Diffusion Layers Modeling………………………………………………40
2.2.3 Electrodes Modeling……………………………………………………...42
2.2.4 Membrane Modeling……………………………………………………..44
2.2.5 Electrochemical Modeling………………………………………………..46
2.2.6 Fuel Cell Body Modeling………………………………………………...50
2.2.7 Thermal Modeling………………………………………………………..51
2.2.8 Auxiliary Components Modeling………………………………………...53
2.2.9 Numerical Solution and Simulation……………………………………...55
2.2.10 Model Validation………………………………………………………..58
2.2.11 Parameter Estimation……………………………………………………59
2.2.12 Sensitivity Analysis……………………………………………………..61
2.2.13 Optimization…………………………………………………………….64
2.3 REFERENCES………………………………………………………………….78
CHAPTER 3 PEM FUEL CELL MODEL FORMULATION……………………...84
3.1 MODEL DESCRIPTION……………………………………………………….84
3.2 ASSUMPTIONS………………………………………………………………...86
3.3 FORMULATION OF THE GOVERNING EQUATIONS……………………..87
3.3.1 Mass Balance……………………………………………………………..87
3.3.2 Energy Balance…………………………………………………………...92
3.3.3 Cell Potential……………………………………………………………..93
3.4 NUMERICAL METHOD………………………………………………………97
3.5 NOMENCLATURE…………………………………………………………...105
3.6 REFERENCES………………………………………………………………...107
CHAPTER 4 PARAMETER SENSITIVITY……………………………………….109
4.1 SENSITIVITY ANALYSIS…………………………………………………...109
4.2 SENSITIVITY INDEX………………………………………………………..110
4.3 SENSITIVITY ANALYSIS USING MATLAB………………………………113
4.3.1 Description of ode15s Solver…………………………………………...113
4.3.2 Description of sens_ind and sen_sys Functions………………………...113
4.3.3 Use of sens_ind and sens_sys…………………………………………...114
4.4 SOLUTION APPROACH……………………………………………………..115
4.5 RESULTS AND DISCUSSIONS……………………………………………...116
4.5.1 Analysis Based on Absolute Sensitivity………………………………...116
4.5.2 Analysis Based on Relative Sensitivity…………………………………125
4.6 NOMENCLATURE………………………………………………………...…134
4.7 REFERENCES………………………………………………………………...135
CHAPTER 5 SYSTEM OPTIMIZATION……………………………………….….137
5.1 OPTIMIZATION PROBLEM………………………………………………....137
5.1.1 Selection of Design Variables…………………………………………..137
5.1.2 Objective Function…………………………………………………..….138
5.1.3 Constraint Equations.........................................................................…...140
5.1.4 Side Constraints…………………………………………………………141
5.1.5 Scaling of the Design Variables……………………………………..….141
5.2 OPTIMIZATION METHOD…………………………………………………..142
5.2.1 Investigation of the Nature of Solution by Graphical Technique…….…142
5.2.2 Nonlinear Programming……………………………………….………..143
5.2.3 Analytical Conditions…………………………………………………...146
5.2.4 Kuhn-Tucker Conditions………………………………………………..147
5.3 SOLUTION APPROACH………………………………………………..……149
5.4 RESULTS AND DISCUSSIONS……………………………………………...153
5.4.1 Nature of Solution………………………………………………………153
5.4.2 Nonlinear Programming………………………………………………...186
5.5 NOMENCLATURE…………………………………………………………...203
5.6 REFERENCES…………………………….…………………………………..205
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS………………………….207
VITA
D.M. Simmons, Nonlinear Programming for Operations Research. Prentice Hall, Englewood Cliffs, New Jersey, 1975.

G.P. McCormick, Nonlinear Programming: Theory, Algorithms, and Applications. John Wiley & Sons, Inc, 1983.

P. Venkataraman, Applied Optimization with MATLAB Programming. Wiley-Interscience, 2001.

P. Berg, K. Promislow, J. St. Pierre, J. Stumper, B. Wetton, “Water Management in PEM Fuel Cells,” Journal of the Electrochemical Society, vol. 151, Issue 3, pp. A341-A353, 2004.

T.F. Fuller and J. Newman, “Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells”, Journal of the Electrochemical Society, vol. 140, Issue 5, pp. 1218-1225, 2003.

T. Nguyen and R. White, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” Jo0urnal of the Electrochemical Society, vol. 140, Issue 8, pp. 2178-2186, 1993.

A. Mawardi, F. Yang and R. Pitchumani., “Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density,” Journal of Power Sources, vol. 2, pp. 121-135, 2005.

The MathWorks Inc., MATLAB 7.0, Natick, MA, 2004.

The Mathworks Inc., Optimization Toolbox 3 User’s Guide, 2007.

J. Larminie and A. Dicks, Fuel Cell Systems Explained. New York: Wiley, 2000, pp. 67-119.

R.H. Perry and D.W. Green, Perry’s Chemical Engineer’s Handbook, 7th Edition, 1997.
R. Robert, J. Prausnitz and B. Poling, The Properties of Gases and Liquids, 4th Edition. McGraw-Hill, New York, 1987.

M. Grujicic and K.M. Chitajallu, “Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cell,” Applied Surface Science, vol. 227, Issues 1-4, pp. 56-72, 2004.

J. Wishart, Z. Dong and M. Secanell, “Optimization of a PEM Fuel Cell System Based on Empirical Data and a Generalized Electrochemical Semi-Empirical Model,” Journal of Power Sources, vol. 161, Issue 2, pp. 1041-1055, 2006.

G. Hoogers, Fuel Cell Technology Handbook. CRC Press, 2003.

W. Vielstich, A. Lamm and H. Gasteiger., Handbook of Fuel Cells: Fundamental Technology and Applications. West Sussex: Wiley, 2003.

F. Barber, PEM Fuel Cells: Theory and Practice. Amsterdam; Elsevier/Academic Press, 2005.

V.M. Molla and R. Padilla, Description of the MATLAB Functions SENS_SYS AND SENS_IND, Universidad Politecnica de Valencia, Spain, 2002.

J. Correa, F. Farret, V. Popov and M. Simões, “Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells,” IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp. 211-218, 2005.

S. Campanari and P. Iora, “Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry”, Journal of Power Sources, vol. 132, Issues 1-2, pp. 113-126, 2004.

C.H. Min, Y.L. He, X.L. Liu, B.H. Yin, W. Jiang and W.Q. Tao, “Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation; Part II: Results of Sensitivity Analysis and Validation of the Model,” Journal of Power Sources, vol. 160, Issue 1, pp. 374-385, 2006.

M. Kimble and R. White, “Parameter Sensitivity and Optimization Predictions of a Hydrogen/Oxygen Alkaline Fuel Cell Model,” Journal of the Electrochemical Society, vol. 139, no. 2, pp. 478-484, 1992.

L. Breierova and M. Choudhari, An Introduction to Sensitivity Analysis, Massachusetts Institute of Technology, 2001.
[7]J. Cheng, X. Z. Jia and Y. B. Wang, “Numerical Differentiation and its Application,” Inverse Problems in Science and Engineering, vol. 15, no. 4, pp. 339-357, 2007.

T. Maly and L. Petzold, “Numerical Methods and Software for Sensitivity Analysis of Differential-Algebraic Systems,” Applied Numerical Math, vol. 20, pp. 57-59, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊