跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:利菀怡
研究生(外文):Wan-yi Lee
論文名稱:考慮信用風險之可轉債訂價-KMV模型
論文名稱(外文):Pricing Convertible Bonds with Default Risk: A KMV Approach
指導教授:林丙輝林丙輝引用關係王之彥王之彥引用關係
指導教授(外文):Lin, Bing-HueiJr-yan Wang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:36
中文關鍵詞:KMV模型可轉債訂價信用風險
外文關鍵詞:KMV modelCB pricing modelcredit risk
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以二項數建立可轉換公司債之評價模型,並加入破產風險的考量,其中破產機率藉由KMV公司所發展出的KMV模型預測。比較三種不同的破產機率假設下,所評價出的可轉換公司債價格,並且取樣五檔在美國發行之可轉換公司債,做實證分析,看評價模型考慮破產機率後,是否貼近市場價格。
This thesis combined the KMV model with the Binomial-tree model for pricing con-vertible bonds (CBs). The KMV model is a sort of structural models for credit risk to generate the Expected Default Frequency (or EDF). Some numerical examples are given to illustrate our model and others. Five zero-coupon CBs issued in the U.S. are collected to conduct the empirical studies to compare the results of our model and the real market price.
Contents
Contents I
List of Tables II
List of Figures III
1 Introduction 1
2 The Model 5
2.1 Prediction default probability-Moody’s KMV Model . . . . . . . . . . . . . 5
2.2 CB pricing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Our model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Numerical Analysis 12
3.1 Default probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.1 Stochastic default probability . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Constant default probabilities . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Without default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The values of CB under different default cases . . . . . . . . . . . . . . . . 15
3.2.1 The Volatility of Equity . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 The debt ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Empirical Studies 19
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 The Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Conclusion 23

List of Tables
Table 2-1 The Relationship of DD and EDF . . . . . . . . . . . . . . . . . . . . 7
Table 3-1 The Price of CB with Different Volatility of Equity. . . . . . . . . . . 16
Table 3-2 The Price of CB with Different Leverage of Firm. . . . . . . . . . . . 18
Table 4-1 The Growth Rate of Debt of HEWLETT-PACKARD. . . . . . . . . . 20
Table 4-2 The Information of the Contract of CB. . . . . . . . . . . . . . . . . 21
Table 4-2 (continue) The Information of the Contract of CB. . . . . . . . . . . 22
Table A.1 The Growth Rate of Debt of MARRIOTT. . . . . . . . . . . . . . . . 26
Table A.2 The Growth Rate of Debt of SHAW. . . . . . . . . . . . . . . . . . . 26
Table A.3 The Growth Rate of Debt of SOLECTRON. . . . . . . . . . . . . . . 27
Table A.4 The Growth Rate of Debt of CAMERON. . . . . . . . . . . . . . . . 27

List of Figures
Figure 2-1 The General Ideal of the Relationship of DD and EDF. . . . . . . . . 5
Figure 2-2 The One-Period Tree for the Simple CB Pricing Model. . . . . . . . . 8
Figure 2-3 The Payoff of Each Node. . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2-4 DD as a Function of D/E Ratio. . . . . . . . . . . . . . . . . . . . . 10
Figure 2-5 DP as a Function of DD. . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2-6 The One-Period Tree for Our Model. . . . . . . . . . . . . . . . . . . 10
Figure 2-7 Four Elements at Each Node to Determine the Credit Risk. . . . . . 11
Figure 2-8 Constructing the Payoff of Each node for Our Model. . . . . . . . . . 11
Figure 3-1 Determining the Stochastic Default Probability of Each Node. . . . . 13
Figure 3-2 Constructing the Payoff of Each Node Following a Stochastic Default
Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3-3 Determining the Constant Default Probability of Each Node. . . . . . 14
Figure 3-4 Constructing the Payoff of Each Node Following a Constant Default
Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3-5 Constructing the Payoff of Each Node without Default Probability. . 14
Figure 3-6 CB Value as a Function of ˙E. . . . . . . . . . . . . . . . . . . . . . 17
Figure 3-7 CB Value as a Function of Debt Ratio. . . . . . . . . . . . . . . . . . 18
Andersen Leif, and Dan Buffum, 2003, Calibration and Implementation of Convertible
Bond Models, Journal of Computational Finance, Vol. 7, 1-34.
Arora Navneet, Jeffrey R. Bohn, and Fanlin Zhn, 2005, Reduced Form vs. Structural
Models of Credit Risk: A Case Study of Three Models, White Paper by Moody’s
KMV.
Ayache E., P. A. Forsyth, and K. R. Vetzal, 2003, The Valuation of Convertible Bonds
with Credit Risk, Working paper
Brennan, M. J., and E. S. Schwartz, 1977, Convertible Bonds: Valuation and Optimal
Strategies for Call and Conversion, Journal of Finance, Vol. 32, 1699-1715.
Brennan, M. J., and E. S. Schwartz, 1980, Analyzing Convertible Bonds, Journal of
finance and Quantitative Analysis, Vol. 15, 907-930.
Darrell Duffie and Kenneth J. Singleton, 1999, Modeling Term Structures of Defaultable
Bonds, Review of Financial Studies, Vol. 12, 688-720.
Hull John c.,2003, Option, Futures, and Other Derivatives.
Hung Mao-Ewi, and Jr-Yan Wang, 2002, Pricing Convertible Bonds Subject to Default
Risk, Journal of Derivatives.
Jarrow, R., and P. Protter, 2004, Structural versus Reduced Form Models: A New
Information Based Perspective, Working Paper, Cornell University.
Jarrow, R., and S. Turnbull, 1995, Pricing Derivatives on Financial Securities Subject
to Default Risk, Journal of Finance, Vol. 50, 53-86.
Leland, Hayne E, and Klaus Bjerre Toft, 1996, Optimal Capital Structure, Endogeneous
Bankruptcy, and the Term Structure of Credit Spreads, Journal of Finance, Vol.
51, 987-1019.
Merton, R., 1974, On the Pricing of Corporate Debt: The Risk Structure of Interest
Rates, Journal of Finance, Vol. 29, 449-470.
Perer Crosbie and Jeff Bohn, 2003, Modeling Default Risk, White Paper by Moody’s
KMV.
Takahashi Akihiko, Takao Kobayashi, and Naruhisa Nakagawa, 2001, Pricing Convert-ible
Bonds with Default Risk: A Duffie-Singleton Approach, in Journal of Fixed
Income,Vol. 11, 9-20.
Tsiveriotis Kostas, and Chris Fernandes, 1998, Valuing Convertible Bonds with Credit
Risk, Journal of Fixed income, Vol. 8, 95-102.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top