|
[1] A. Bagga and B. Baldwin. Entity-based cross-document coreferencing using the vector-space model. Proceedings of the 17th international conference on Computational linguistics, 4:79-85, 1998. [2] M. W. Berry, S.T. Dumais, and G. W. O'Brien. Using linear algebra for intelligent information retrieval. SIAM review, 573-595, 1995. [3] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second edition, 1999. [4] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998. [5] L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. CIKM '04: Proceedings of the thirteenth ACM international conference on Information and knowledge management, 78-87, 2004. [6] S. Chakrabarti. Mining the Web. Morgan Kaufmann Publishers, 2003. [7] C. Chen and O. L. Mangasarian. Smoothing methods for convex inequalities and linear complementarity problems. Mathematical Programming, 71(1):51-69, 1995. [8] C. Chen and O. L. Mangasarian. A class of smoothing functions for nonlinear and mixed complementarity problems. Computational Optimization and Applications,5(2):97-138, 1996. [9] V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John Wiley & Sons, New York, 1998. [10] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, 2000. [11] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. Indexing by latent semantic analysis. Journal of the Society for Information Science, 391-407, 1990. [12] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances in Large Margin Classifiers, 171{203, 2000. [13] G. Forman. A pitfall and solution in multi-class feature selection for text classification. ICML '04: Proceedings of the twenty-first international conference on Machine learning, 9:38-46, 2004. [14] M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 15:1437-1447, 2003. [15] T. Hofmann. Probabilistic latent semantic indexing. In Proceeding of SIGIR-99, 22nd ACM International Conference on Research and Development in Information Retrieval, 50-57, 1999. [16] T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer Academic Puhlishers, 2002. [17] H. Kim, P. Howland, and H. Park. Dimension reduction in text classification with support vector machines. Journal of Machine Learning Research, 6:37-53, 2005. [18] T. G. Kolda and D. P. O'Leary. A semidiscrete matrix decomposition for latent semantic indexing information retrieval. ACM Transactions on Information Systems, 16(4):322-346, 1998. [19] U. Kre¼el. Pairwise classification and support vector machines. Advances in Kernel Methods - Support Vector Learning, 255-268, 1999. [20] Y. J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine. Computational Optimization and Applications, 20:5-22, 2001. [21] Y. J. Lee, O. L. Mangasarian, and W. H. Wolberg. Survival-time classification of breast cancer patients. Computational Optimization and Applications, 25:151-166, 2003. [22] E. Leopold and J. Kindermann. Text categorization with support vector machines. How to represent texts in input space? Machine Learning, 46:423-444, 1 2002. [23] K. C. Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):316-327, jun 1991. [24] O. L. Mangasarian. Mathematical programming in neural networks. ORSA Journal on Computing, 5(4):349-360, 1993. [25] O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA, 1994. [26] O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support vector machines. IEEE Transactions on Neural Networks, 10:1032-1037, 1999. [27] MATLAB. User's Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2001. http://www.mathworks.com. [28] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell. Learning to classify text from labeled and unlabeled documents. Proceedings of AAAI-98, 15th Conference of the American Association for Arti‾cial Intelligence, 792-799, 1998. [29] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. IEEE Conference on Computer Vision and Pattern Recognition, 130-136, 1997. [30] M. Porter. An algorithm for su±x stripping. Program Automated Library and Information Systems, 14(1):130-137, 1980. [31] J. Rousu, C. Saunders, S. Szedmak, and J. S. Taylor. Learning hierarchical multi-category text classification models. ICML '05: Proceedings of the 22nd international conference on Machine learning, 744-751, 2005. [32] S. Roweis. Finding the first few eigenvectors in a large space. informal note, Dec 1996. http://www.cs.toronto.edu/»roweis/notes.html. [33] J. Shlens. A tutorial on principal component analysis. Dec 2005. http://www.cs.cmu.edu/»elaw/papers/pca.pdf. [34] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995. [35] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998. [36] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Puhlishers, 2 edition, 2005. [37] L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. J. Mach. Learn. Res., 6:1855-1887, 2005. [38] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization. 14th International Conference on Machine Learning, 412-420, 1997. [39] S. Yu, K. Yu, V. Tresp, H. P. Kriegel, and M. Wu. Supervised probabilistic principal component analysis. 464-473, 2006.
|