|
References [1] G. M. Adel’son-Vel’ski?i and E. M. Landis, An algorithm for organization of information, Soviet Mathematics Doklady 3 (1962) 1259–1263. [2] H. Ahrabian and A. Nowzari-Dalini, On the generation of binary trees in A-order, International Journal of Computer Mathematics 71 (1999) 351–357. [3] H. Ahrabian and A. Nowzari-Dalini, Generation of t-ary trees with Ballot-sequences, International Journal of Computer Mathematics 80 (2003) 1243–1249. [4] H. Ahrabian, A. Nowzari-Dalini, and E. Salehi, Gray code algorithm for listing k-ary trees, Studies in Informatics and Control 13 (2004) 243–251. [5] H. Ahrabian and A. Nowzari-Dalini, Adaptive generation of t-ary trees in parallel, The Electronic International Journal Advanced Modeling and Optimization 8 (2006) 19–28. [6] S. G. Akl and I. Stojmenovi?c, Generating t-ary trees in parallel, Nordic Journal of Computing 3 (1996) 63–71. [7] A. Andersson, General balanced trees, Journal of Algorithms 30 (1999) 1–18. [8] V. Bapiraju and V.V.B. Rao, Enumeration of binary trees Information Processing Letters 51 (1994) 125-127. [9] R. Bayer, Symmetric binary B-trees: data structure and maintenance algorithms, Acta Informatica 1 (1972) 290–306. [10] M. K. Bennet and G. Birkhoff, Two families of Newman lattices, Algebra Universalis 32 (1994) 115–144. [11] A. Bonnin and J. Pallo, A shortest path metric on unlabeled binary Trees, Pattern Recognition Letters 13 (1992) 411–415. [12] Yen-Ju Chen, Jou-Ming Chang, and Yue-LiWang, An efficient algorithm for estimating rotation distance between two binary trees, International Journal of Computer Mathematics 82 (2005) 1095-1106. [13] S. Cleary, Restricted rotation distance between binary trees, Information Processing Letters 84 (2002) 333–338. [14] S. Cleary and J. Taback, Bounding restricted rotation distance, Information Processing Letters 88 (2003) 251–256. [15] K. Culik and D. Wood, A note on some tree similarity measures, Information Processing Letters 15 (1982) 39–42. [16] B. Effantin, Generation of valid labelled binary trees, Proceedings of the 2003 International Conference on Computational Science and Its Applications (ICCSA’2003), Lecture Notes in Computer Science (LNCS) 2667, 2003, pp. 245-253. [17] G. Ehrlich, Loopless algorithms for generating permutations, combination, and other combinatorial configurations, Journal of the ACM 20 (1973) 500–513. [18] M. C. Er, Efficient generation of k-ary trees in natural order, The Computer Journal 35 (1992) 306–308. [19] A. Gibbons and P. Sant, Rotation sequences and edge-colouring of binary tree pairs, Theoretical Computer Science 326 (2004) 409–418. [20] L. Guibas and J. Hershberger, Morphing simple polygons, Proceedings of the ACM 10th Annual Symposium of Computational Geometry (SCG’94), 1994, pp. 267-276. [21] J. Hershberger and S. Suri, Morphing binary trees, Proc. ACM-SIAM 6th Annual Symposium of Discrete Algorithms (SODA’95), 1995, pp. 396-404. [22] F. Hurtado and M. Noy, Graph of triangulations of a convex polygon and tree of triangulations, Computational Geometry 13 (1999) 179–188. [23] D. A. Klarner, Correspondences between plane trees and binary sequences, Journal of Combinatorial Theory 9 (1970) pp. 401–411. [24] G. D. Knott, A numbering system for binary trees, Communications of ACM 20 (2), (1977), 113-115. [25] D. E. Knuth, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison-Wesley, Reading, MA, 1968. [26] D. E. Knuth, Sorting and Searching, in: The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973. [27] Z. Kokosi?nski, On parallel generation of t-ary trees in an associative model, in: Proc. of 4th International Conference on Parallel Processing and Applied Mathematics (PPAM 2001), LNCS 2328, Springer, 2002, pp. 228–235. [28] Z. Kokosi?nski, A parallel dynamic programming algorithm for unranking t-ary treesl, in: Proc. of 5th International Conference on Parallel Processing and Applied Mathematics (PPAM 2003), LNCS 3019, Springer, 2004, pp. 255–260. [29] J. F. Korsh, Loopless generation of k-ary tree sequences, Information Processing Letters 52 (1994) 243–247. [30] J. F. Korsh and S. Lipschutz, Shifts and loopless generation of k-ary trees, Information Processing Letters 65 (1998) 235–240. [31] J. F. Korsh and P. LaFollette, Loopless generation of Gray code for k-ary trees, Information Processing Letters 70 (1999) 7–11. [32] J. F. Korsh, Generating t-ary trees in linked representation, The Computer Journal 48 (2005) 488–497. [33] J.M. Lucas, The rotation graph of binary trees is Hamiltonian, Journal of Algorithms 8 (1987) 503–535. [34] J. M. Lucas, D. Roelants van Baronaigien, and F. Ruskey, On rotations and the generation of binary trees, Journal of Algorithms 15 (1993) 343–366. [35] J. M. Lucas, A direct algorithm for restricted rotation distance, Information Processing Letters 90 (2004) 129–134. [36] J. M. Lucas, Untangling binary trees via rotations, The Computer Journal 47 (2004) 259–269. [37] F. Luccio and L. Pagli, On the upper bound on the rotation distance of binary trees, Information Processing Letters 31 (1989) 57–60. [38] E. M?akinen, Left distance binary tree representations, BIT 27 (1987) 163–169. [39] E. M?akinen, On the rotation distance of binary trees, Information Processing Letters 26 (1987/88) 271–272. [40] E. M?akinen, Generating random binary trees – A survey, Information Sciences 115 (1999) 123-136. [41] H. W. Martin and B. J. Orr, A random binary tree generator, in: Proc. of the 17th conference on ACM Annual Computer Science Conference, Louisville, Kentucky, February 21-23, 1989, pp. 33-38. [42] J. Pallo and R. Racca, A note on generating binary trees in A-order and B-order, Intern. J. Computer Math. 18 (1985) 27–39. [43] J. Pallo, Enumerating, ranking and unranking binary trees, The Computer Journal 29 (1986) 171–175. [44] J. Pallo, On the rotation distance in the lattice of binary trees, Information Processing Letters 25 (1987) 369–373. [45] J. Pallo, Some properties of the rotation lattice of binary trees, The Computer Journal 31 (1988) 564–565. [46] J. Pallo, An efficient upper bound of the rotation distance of binary trees, Information Processing Letters 73 (2000) 87–92. [47] J. Pallo, Right-arm rotation distance between binary trees, Information Processing Letters 87 (2003) 173–177. [48] J. Pallo, Rotational tree structures on binary trees, Proc. 11th International Conference on Automata and Formal Languages (AFL’05), Dobogoko, Hungary, May 17-20, pp. 263–274. [49] A. Proskurowski, On the generating of binary trees, Journal of the ACM 27 (1980) 1–2. [50] A. Proskurowski and F. Ruskey, Binary tree gray codes, Journal of Algorithms 6 (1985) 225–238. [51] D. Roelants van Baronaigien and F. Ruskey, Generating t-ary trees in A-order, Information Processing Letters 27 (1988) 205–213. [52] D. Roelants van Baronaigien, A loopless algorithm for generating binary tree sequences, Inform. Process. Lett. 39 (1991) 189194. [53] D. Roelants van Baronaigien, A loopless Gray-code algorithm for listing k-ary trees, Journal of Algorithms 35 (2000) 100–107. [54] R. O. Rogers and R. D. Dutton, Properties of the rotation graph of binary trees, Congressus Numerantium 109 (1995) 51–63. [55] R. O. Rogers and R. D. Dutton, On distance in the rotation graph of binary trees, Congressus Numerantium 120 (1996) 103–113. [56] R. O. Rogers, On finding shortest paths in the rotation graph of binary trees, Congressus Numerantium 137 (1999) 77–95. [57] D. Rotem, On a correspondence between binary trees and a certain type of permutation, Information Processing Letters 4 (1975) 58–61. [58] F. Ruskey and T. C. Hu, Generating binary trees lexicographically, SIAM Journal on Computing 6 (1977) 745–758. [59] F. Ruskey, Generating t-ary trees lexicographically, SIAM Journal on Computing 7 (1978) 424–439. [60] F. Ruskey and A. Proskurowski, Generating binary trees by transpositions, Journal of Algorithms 11 (1990) 68–84. [61] C. D. Savage, A survey of combinatorial Gray codes, SIAM Review 39 (1997) 605–629. [62] I. Semba, Generation of all the balanced Parenthesis strings in lexicographical order, Information Processing Letters 12 (1981) 188–192. [63] D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, Journal of the ACM 32 (1985) 652–686. [64] D. D. Sleator, R. E. Tarjan, and W. R. Thurston, Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society 1 (1988)647–681. [65] N. J. A. Sloane, Sequence A009766 in ”The On-Line Encyclopedia of Integer Sequences.” [66] M. Solomon and R.A. Finkel, A note on enumerating binary trees, J. ACM 27 (1980) 3-5. [67] R. Sundar, On the deque conjecture for the splay algorithm, Combinatorica 12 (1992) 95–124. [68] T. Takaoka, O(1) time algorithms for combinatorial generation by tree traversal, The Computer Journal 42 (1999) 400–408. [69] A. E. Trojanowaki, Ranking and listing algorithms for k-ary trees, SIAM Journal on Computing 7 (1978) 492–509. [70] V. Vajnovszki, C. Phillips, Optimal parallel algorithm for generating k-ary trees, in: Proc. of the 12th International Conference on Computers and Their Applications, Tempe, Arizona, (ed. M. C. Woodfill), March 13-15, 1997, pp. 201–204 [71] V. Vajnovszki, On the loopless generation of binary tree sequences, Information Processing Letters 68 (1998) 113–117. [72] V. Vajnovszki and C. Phillips, Systolic generation of k-ary trees, Parallel Processing Letters 9 (1999), 93–101. [73] V. Vajnovszki, Generating a Gray code for P-sequences, Journal of Mathematical Modelling and Algorithms 1 (2002) 31–41. [74] S. G. Williamson, Combinatorics for Computer Science, Computer Science Press, Rockville, MD, 1985. [75] L. Xiang, K. Ushijima, and S. G. Akl, Generating regular k-ary trees efficiently, The Computer Journal 43 (2000) 290–300. [76] L. Xiang, K. Ushijima, and C. Tang, Efficient loopless generation of Gray codes for k-ary trees, Information Processing Letters 76 (2000) 169–174. [77] L. Xiang and K. Ushijima, On O(1) time algorithms for combinatorial generation, The Computer Journal 44 (2001) 292–302. [78] L. Xiang, K. Ushijima, and C. Tang, On generating k-ary trees in computer representation, Information Processing Letters 77 (2001) 231–238. [79] L. Xiang, K. Ushijima, and Y. Asahiro, Coding k-ary trees for efficient loopless generation in lexicographic order, in: Proc. of International conference on Information Technology: Coding and Computing (ITCC’02), IEEE Computer Society Press, Las Vegas, April 8-10, 2002, pp. 396–401. [80] Ro-Yu Wu, Jou-Ming Chang, Yue-Li Wang, A linear time algorithm for binary tree sequences transformation using left-arm and right-arm rotations, Theoretical Computer Science 355(3) (2006) 303-314. [81] S. Zaks, Lexicographic generation of ordered trees, Theoretical Computer Science 10 (1980) 63–82. [82] S. Zaks, Generation and ranking of k-ary trees, Information Processing Letters 14 (1982) 44–48. [83] D. Zerling, Generating binary trees using rotations, Journal of Association for Computing Machinery 32 (1985) 694–701.
|