[1]R.Agawal,T. Imielinski and A. Swami.“Mining Association Rules between Sets of Items in Large Databases,”Proc. Of ACM SIGMOD,pages 207-216,May 1993.
[2]G. Manku and R. Motwani,“Approximate Frequency Counts over Data Streams,”Proc. Of VLDB Conf,. pp.346-357,2002
[3]R.Agrawal and R. Srikant(1995),“Mining sequential patterns,”Proceeding of The International Conference of Data Engineering ,3-14.
[4]J.H.Chang and W.S.Lee,“Finding Recent Frequent Itemsets Adaptively over Online Data Stream,“Proc. Of ACM SIGKDD Conf., pp.487-492 2003.
[5]E.Cohen and M.Strauss,“Maintaining Time Decaying Stream Aggregates,”Proc. Of ACM PODS Symp.,2003.
[6]R.Agrawal and R.Srikant,“Fast Algorithms for Mining Association Rules,”Proc. Of VLDB Journal, 12(2): 120-139, 2003.
[7]A.Arasu snd G.S.Manku,“Approximate Counts and Quantiles over Sliding Windows,”Proc. Of ACM PODS Symp.,2004.
[8]D.Cheung,J.han,V.Ng, and C.Y.Wong,“Maintenance of Discovered Association Rules in Large Database: An Incremental Updating Technique,”Proc. Of ICDE Conf.,1996
[9]G.Cormode and S.Muthukrishnaan,“What’s Hot and What’s not: Tracking Most Frequent items Dynamically,”Proc. Of ACM PODS Symp., pp.296-306,2003
[10]C.Giannella, J.Han, J.Pei, X.Yan, and P.S.Yu,“Mining Frequent Patterns in Data Streams at Multiple Time Granularities,”H. Kargupta, A.Joshi, K.Sivakumar, and Y. Yesha(eds.), Next Generation Data Mining, pp.191-212,2003
[11]J.Han and K.Kamber, Simon Fraser University(2001), Data Mining:Concepts and Techniques,5nd ed., San Francisco: Morgan Kaufmann, pp.230-235
[12]A. Das, W. K. Ng and Y. K. Woon, “Association Rule Mining:Rapid Association Rule Mining,”Proceedings of the tenth international conference on Information and Knowledge Management October 2000
[13]P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa and D. Shah,“Turbo-Charging Vertical Mining of Large Databases,”ACM SIGMOD Record,Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,May 2000
[14]Yudho Giri Sucahyo, Raj P. Gopalan,“CT-ITL: Efficient Frequent Item Set Mining Using a Compressed Prefix Tree with Pattern Growth,” ACM International Conference Proceeding Series; Vol. 143, Proceedings of the 14th Australasian database conference - Volume 17, pp.95-104, 2003.
[15]邱士軍(2002),“關聯規則演算法之實作與效能評估”,國立台灣科技大學資訊管理研究所碩士論文。[16]王守田(2004),“一個使用高頻串列具有可擴充性的關連規則演算法”,國立台灣科技大學資訊管理研究所碩士論文。[17]宋子康(2006),“資料串流中尋找關聯法則之研究”,國立台灣科技大學資訊管理研究所碩士論文。[18]Yunyue Zhu, Dennis Shasha;StatStream:Statistical Monitoring of Thousands of Data Streams in Real Time;Int’l Conf. on Very Large Data Bases; 2002
[19]Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan; An Efficient Algorithm for Mining Frequent Itemsets over the Entrie History of Data Stream; Int’l Workshop on Knowledge Discovery in Data Stream: Sept. 2004
[20]Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou; False Positive or False Negative: Mining Frequent Itemsets from High Speed Transactional Data Stream; Int’l Conf. on Very Large Databases; 2004
[21]Joong Hyuk Chang, Won Suk Lee;Finding Recently Ferquent Itemsets Adaptively over Online Data Streams; ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining; August 2003
[22]Joong Hyuk Chang, Won Suk Lee; A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Stream; Journal of Information Science and Engineering; July 2004
[23]Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, Arbee L. P. Chen; Mining Frequent Itemsets from Data Streams with a Time-Sensitive Slidind Window; SIAM Int’l Conf. on Data Stream; April 2005