|
[1] C. D. Poole and R. E. Wanger, “Phenomenological approach to polarization dispersion in long single mode fiber,” Electron. Lett., vol. 22, pp.1029-1030, 1986.
[2] N. Gisin and R. Passy, “Experimental investigation of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett., vol. 5, no. 7, pp. 819-821, July 1993.
[3] R. E. Schuh and E. S. R Sikora, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers, ” Electron. Lett., vol. 31, no. 20, pp. 1772-1773, Sep. 1995.
[4] B. W. Hakki, “Polarization Mode Dispersion in a Single Mode Fiber,” J. Lightwave Technol., vol. 14, no. 10, pp.2202-2208, Oct. 1996.
[5] A. O. D. Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization mode dispersion in Single Mode Fibers,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 293-298, Mar. 2000.
[6] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol., vol. 9. no. 11, pp. 1439-1456, Nov. 1991.
[7] L. Moller and L. Buhl, “Method for PMD vector monitoring in picosecond pulse transmission systems,” J. Lightwave Technol., vol. 19, no. 8, pp. 1125-1129, Aug. 2001.
[8] P. B. Phua, J. M. Fini, and H. A. Haus, “Real time first- and second-order PMD characterization using averaged state of polarization of filtered signal and polarization scrambling,” J. Lightwave Technol., vol. 21, no. 4, pp. 982-989, Apr. 2003.
[9] F. Buchali and H. Bullow, “adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol., vol. 22, no. 4, pp. 1116-1126, Apr. 2004.
[10] R. Noe, D. Sandel, V. Mirvoda, F. Wust, and S. Hinz, “Polarization mode dispersion detected by arrival time measurement of polarization scrambled light,” J. Lightwave Technol., vol. 20, no. 2, pp. 229-235, Feb. 2002.
[11] F. Bruyere, “Imapct of first and second order PMD in optical digital transmission systems,” Optical Fiber Technol., no. 2, pp. 269-280, 1996.
[12] Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett., vol. 28, no. 9, pp. 881-883, Apr. 1992.
[13] Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett., vol. 28, no. 25, pp. 2265-2266, Dec. 1992.
[14] P. Oswald, C. K. Madsen, and R. L. Konsbruck, “Analysis of scalable PMD compensators using FIR filters and wavelength-dependent optical power measurements,” J. Lightwave Technol., vol. 22, no. 2, pp. 647–657, Feb. 2004.
[15] X. Dong, N. Q. Ngo, P. Shum, J. H. Ng, X. Yang, G. Ning, and C. Lu, “Tunable compensation of first-order PMD using a high-birefringence linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 846–848, Mar. 2004.
[16] H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol., vol. 20, no. 3, pp. 368–378, Mar. 2002.
[17] D. Sandel, F. Wüst, V. Mirvoda, and R. Noé, “Standard (NRZ 1x40 Gb/s, 210 km) and polarization multiplex (CS-RZ 2x40 Gb/s, 212 km) transmissions with PMD compensation,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1181–1183, Aug. 2002.
[18] R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A.Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers,” J. Lightwave Technol., vol. 17, no. 9, pp. 1602–1616, Sep. 1999.
[19] L. Möller, “Filter synthesis for broad-band PMD compensation,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1258–1260, Sep. 2000.
[20] A. Eyal and A. Yariv, “Design of broad-band PMD compensation filters,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1088–1090, Aug. 2002.
[21] M. Sharma, H. Ibe, and T. Ozeki, “Optical circuits for equalizing group delay dispersion of optical fibers,” J. Lightwave Technol., vol. 12, No. 10, pp. 1759–1765, Oct. 1994.
[22] M.Wegmuller, S. Demma, C.Vinegoni, and N. Gisin, “Emulator of first and second order polarization mode dispersion,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 630–632, May 2002.
[23] P. Hernday, Fibre Optic Test and Measurement, D. Derickson, Eds., Prentice Hall, New Jersey, pp. 220-245, pp. 487-514, 1998.
[24] M. Janos and S. C. Guy, “Signal-induced refractive index changes in Erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 16, no. 4, pp. 542-548, 1998
[25] J. J. Kao, H. T. Wu and C. W. Tarn, “Theoretical and experimental studies of polarization mode dispersion of an electro-optic Mach-Zehnder modulator ," Appl. Opt., vol. 44, no. 26/10, pp. 5422-5428, Sep. 2005.
[26] S. E. Harris and R. W. Wallace, “Acousto-Optic tunable filter,” J. Opt. Soc. Am., vol. 59, pp. 744–747, June 1969.
[27] S. Huard, Polarization of Light, Wiley, New York, 1997.
[28] S. C. Rashleigh, “Origins and control of polarization effects in single mode fbers,” J. Lightwave Technol., vol. 1, no. 2, pp. 312–331, June 1983.
[29] C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, no.7, pp. 1185– 1190, July 1988.
[30] P. A. Williams and C. M. Wang, “Corrections to fixed analyzer measurements of polarization mode dispersion,” J. Lightwave Technol., vol. 16, no. 4, pp. 534–541, Apr. 1998
[31] R. C. Jones. “A new calculus for the treatment of optical systems. VI. experimental determination of the matrix,” J. Opt. Soc. Am., vol. 37, pp. 110–112, 1947.
[32] B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigen analysis,” IEEE Photon. Technol. Lett., vol. 4, no. 9, pp. 1066–1069, Sep. 1992.
[33] S. M. R. M. Nezam, J. E. McGeehan, and A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal’s degree of polarization on the optical data spectrum,” J. Lightwave Technol., vol. 22, no. 3, pp. 763-772, Mar. 2004.
[34] C. D. Poole and D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol., vol. 12, no. 6, pp. 917– 929, June 1994.
[35] C. W. Tarn, “Spatial fourier transform approach to the study polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media,” J. Opt. Soc. Am. A , vol. 14, no. 9, pp. 2231-2242, 1997.
[36] C. W. Tarn, “Spatial coherence property of a laser beam during acousto-optic diffraction,” J. Opt. Soc. Am. A, vol. 16, no. 6, pp. 1395-1401, 1999.
[37] A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley, New York, 1984, Chap. 10.
[38] A. Ghatak and K. Thyagarajan, Optical Electronics, Cambidge: Cambridge U. Press, 1989, chaps. 16-19 .
[39] J. A. Kong, Electromagnetic Wave Theory, John Wiley and Suns, Inc , 2 edition, 1990, chap. 2.
[40] P. Lu, L. Chen, and X. Bao, “System outage probability due to the combined effect of PMD and PDL,” J. Lightwave Technol., vol. 20, no. 10, pp. 1805–1808, Oct. 2002.
[41] J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, JohnWiley and Suns, Inc , 1992.
[42] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode Fibers,” J. Lightwave Technol., vol. 9, pp. 1439-1456, Nov. 1991.
[43] K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett., vol. 29, no. 12, pp.1081-1083, June 1993.
[44] P. Wysocki and V. Mazurczyk, “Polarization dependent gain in Erbium doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol., vol.14, no. 4, pp.572-584, Apr. 1996.
[45] S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol., vol. 20, no. 6, pp. 975-985, June 2002.
[46] M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 686-688, Feb. 2004.
|