跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾保彰
研究生(外文):Bao-Jang Tseng
論文名稱:使用可調式之聲光光濾波器線上即時偏極化模態色散監控及緩和之技術
論文名稱(外文):On-Line Polarization Mode Dispersion Monitoring and Mitigation Technique using Acousto-Optic Tunable Filter
指導教授:譚昌文
指導教授(外文):Chen-Wen Tarn
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:111
中文關鍵詞:放大自發輻射極化模態色散可調式聲光濾波器
外文關鍵詞:amplified spontaneous emissionpolarization mode dispersionacousto-optics tunable filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
我們提出利用摻鉺光纖放大器(Erbium Doped Fiber Amplifier, EDFA)透過泵激光源(pumping source) 的調變會間接使放大自發輻射帶有調變信號的特性,調變後之放大自發輻射(amplified spontaneous emission, ASE)當做為監控信號光源來即時、線上及不中斷的量測極化模態色散(polarization mode dispersion, PMD)之技術,在一個由多個摻鉺光纖放大器(EDFA)所組成分波多工(dense wavelength division multiplexed, DWDM)光通訊系統,利用我們提出的技術具有不必另外增加光源、不佔用既有的信號及不受極化相關損失(polarization dependent loss, PDL)等優點,而這個技術是使用頻率領域(frequency doamin)的方法卻擁有時間領域(time domain)方法的即時量測的優點並避免了時間領域方法實際安裝不易的缺點。為提高解析度,我們也提出串聯多個可調式聲光濾波器(acousto-optics tunable filter, AOTF)來量測極化模態色散(PMD)的值。當光在此非等向 (anisotropic) 可調式聲光濾波器中傳輸時,由於不同的極化方向及聲光效應的影響,對光的折射率也會不同,本文中一併討論可調式聲光濾波器的極化模態色散,依此理論可調聲音大小來控制聲光濾波器的群速延遲差(differential group delay, DGD)。最後我們可藉由理論及實驗,來驗證理論模型的正確性。
We propose an on-line, wide-band, adaptive, and no data traffic interruption polarization mode dispersion (PMD) monitoring system based on the modulated amplified spontaneous emission (ASE) and cascaded acousto-optics tunable filters (AOTFs) techniques. This method is applicable to a long-haul, multiple erbium-doped fiber amplifiers (EDFAs), dense wavelength division multiplexing (DWDM) optical transmission system. Due to the unique properties of the non payload signal bearing and wide-band existence, the ASE noise of one of the EFDAs is employed as the supervisory (SV) signal and becomes traceable during transmission by modulating it with low-frequency rf signal. In addition, the AOTFs are used seriously at the receiver side due to its prominently refractive-index adjustability and wide channel scanning properties. This method is based on frequency domain measurement, which has many advantages for implementation.
Using the fixed-analyzer method, PMDs of different wavelength bands which range from 1545-1580nm of an DWDM optic-fiber communication system can be found by adaptively changing the radio frequency of the AOTF. The resolution of the proposed monitoring system can be improved by cascading the AOTFs at the receiver side.
To prove the validity of our method, the theoretical results are compared with the experimental data. A high degree of agreement is observed.
目錄


摘要 i
Abstract iii
誌謝 v


第 一 章 簡介 1
1.1 背景 1
1.2 研究動機與目的 3
1.3 導讀 4
第 二 章 極化模態色散 6
2.1 極化 6
2.1.1 極化的概念 6
2.1.2 極化程度的概念 8
2.1.3 史托克參數 9
2.1.4 邦加球 10
2.2 產生極化模態色散的原因 11
2.3 極化模態色散的量測方法 15
2.3.1 干涉法 15
2.3.2 光脈衝法 18
2.3.3 波長掃描法 19
2.3.4 瓊斯矩陣特徵值法 22
2.3.5 邦加球法 24
2.4 利用極化程度做極化模態色散的監控 25
第 三 章 串聯聲光可調式濾波器的監控極化模態色散技術 29
3.1 簡介 29
3.2 技術理論 30
3.3 實驗結果與理論模擬 39
第 四 章 聲光可調式濾波器的極化模態色散 43
4.1 簡介 43
4.2 一般理論 44
4.3 極化模態色散的推導 57
4.4 實驗結果與理論模擬 60
第 五 章 長途光通訊系統的極化模態色散監控技術 69
5.1 簡介 69
5.2 技術理論 70
5.3 實驗結果與理論模擬 78
第 六 章 結論與未來研究 86
6.1 結論 86
6.2 未來研究 87
[1] C. D. Poole and R. E. Wanger, “Phenomenological approach to polarization dispersion in long single mode fiber,” Electron. Lett., vol. 22, pp.1029-1030, 1986.

[2] N. Gisin and R. Passy, “Experimental investigation of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett., vol. 5, no. 7, pp. 819-821, July 1993.

[3] R. E. Schuh and E. S. R Sikora, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers, ” Electron. Lett., vol. 31, no. 20, pp. 1772-1773, Sep. 1995.

[4] B. W. Hakki, “Polarization Mode Dispersion in a Single Mode Fiber,” J. Lightwave Technol., vol. 14, no. 10, pp.2202-2208, Oct. 1996.

[5] A. O. D. Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization mode dispersion in Single Mode Fibers,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 293-298, Mar. 2000.

[6] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol., vol. 9. no. 11, pp. 1439-1456, Nov. 1991.

[7] L. Moller and L. Buhl, “Method for PMD vector monitoring in picosecond pulse transmission systems,” J. Lightwave Technol., vol. 19, no. 8, pp. 1125-1129, Aug. 2001.

[8] P. B. Phua, J. M. Fini, and H. A. Haus, “Real time first- and second-order PMD characterization using averaged state of polarization of filtered signal and polarization scrambling,” J. Lightwave Technol., vol. 21, no. 4, pp. 982-989, Apr. 2003.

[9] F. Buchali and H. Bullow, “adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol., vol. 22, no. 4, pp. 1116-1126, Apr. 2004.

[10] R. Noe, D. Sandel, V. Mirvoda, F. Wust, and S. Hinz, “Polarization mode dispersion detected by arrival time measurement of polarization scrambled light,” J. Lightwave Technol., vol. 20, no. 2, pp. 229-235, Feb. 2002.

[11] F. Bruyere, “Imapct of first and second order PMD in optical digital transmission systems,” Optical Fiber Technol., no. 2, pp. 269-280, 1996.

[12] Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett., vol. 28, no. 9, pp. 881-883, Apr. 1992.

[13] Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett., vol. 28, no. 25, pp. 2265-2266, Dec. 1992.

[14] P. Oswald, C. K. Madsen, and R. L. Konsbruck, “Analysis of scalable PMD compensators using FIR filters and wavelength-dependent optical power measurements,” J. Lightwave Technol., vol. 22, no. 2, pp. 647–657, Feb. 2004.

[15] X. Dong, N. Q. Ngo, P. Shum, J. H. Ng, X. Yang, G. Ning, and C. Lu, “Tunable compensation of first-order PMD using a high-birefringence linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 846–848, Mar. 2004.

[16] H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol., vol. 20, no. 3, pp. 368–378, Mar. 2002.

[17] D. Sandel, F. Wüst, V. Mirvoda, and R. Noé, “Standard (NRZ 1x40 Gb/s, 210 km) and polarization multiplex (CS-RZ 2x40 Gb/s, 212 km) transmissions with PMD compensation,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1181–1183, Aug. 2002.

[18] R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A.Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers,” J. Lightwave Technol., vol. 17, no. 9, pp. 1602–1616, Sep. 1999.

[19] L. Möller, “Filter synthesis for broad-band PMD compensation,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1258–1260, Sep. 2000.

[20] A. Eyal and A. Yariv, “Design of broad-band PMD compensation filters,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1088–1090, Aug. 2002.

[21] M. Sharma, H. Ibe, and T. Ozeki, “Optical circuits for equalizing group delay dispersion of optical fibers,” J. Lightwave Technol., vol. 12, No. 10, pp. 1759–1765, Oct. 1994.

[22] M.Wegmuller, S. Demma, C.Vinegoni, and N. Gisin, “Emulator of first and second order polarization mode dispersion,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 630–632, May 2002.

[23] P. Hernday, Fibre Optic Test and Measurement, D. Derickson, Eds., Prentice Hall, New Jersey, pp. 220-245, pp. 487-514, 1998.

[24] M. Janos and S. C. Guy, “Signal-induced refractive index changes in Erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 16, no. 4, pp. 542-548, 1998

[25] J. J. Kao, H. T. Wu and C. W. Tarn, “Theoretical and experimental studies of polarization mode dispersion of an electro-optic Mach-Zehnder modulator ," Appl. Opt., vol. 44, no. 26/10, pp. 5422-5428, Sep. 2005.

[26] S. E. Harris and R. W. Wallace, “Acousto-Optic tunable filter,” J. Opt. Soc. Am., vol. 59, pp. 744–747, June 1969.

[27] S. Huard, Polarization of Light, Wiley, New York, 1997.

[28] S. C. Rashleigh, “Origins and control of polarization effects in single mode fbers,” J. Lightwave Technol., vol. 1, no. 2, pp. 312–331, June 1983.

[29] C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, no.7, pp. 1185– 1190, July 1988.

[30] P. A. Williams and C. M. Wang, “Corrections to fixed analyzer measurements of polarization mode dispersion,” J. Lightwave Technol., vol. 16, no. 4, pp. 534–541, Apr. 1998

[31] R. C. Jones. “A new calculus for the treatment of optical systems. VI. experimental determination of the matrix,” J. Opt. Soc. Am., vol. 37, pp. 110–112, 1947.

[32] B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigen analysis,” IEEE Photon. Technol. Lett., vol. 4, no. 9, pp. 1066–1069, Sep. 1992.

[33] S. M. R. M. Nezam, J. E. McGeehan, and A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal’s degree of polarization on the optical data spectrum,” J. Lightwave Technol., vol. 22, no. 3, pp. 763-772, Mar. 2004.

[34] C. D. Poole and D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol., vol. 12, no. 6, pp. 917– 929, June 1994.

[35] C. W. Tarn, “Spatial fourier transform approach to the study polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media,” J. Opt. Soc. Am. A , vol. 14, no. 9, pp. 2231-2242, 1997.

[36] C. W. Tarn, “Spatial coherence property of a laser beam during acousto-optic diffraction,” J. Opt. Soc. Am. A, vol. 16, no. 6, pp. 1395-1401, 1999.

[37] A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley, New York, 1984, Chap. 10.

[38] A. Ghatak and K. Thyagarajan, Optical Electronics, Cambidge: Cambridge U. Press, 1989, chaps. 16-19 .

[39] J. A. Kong, Electromagnetic Wave Theory, John Wiley and Suns, Inc , 2 edition, 1990, chap. 2.

[40] P. Lu, L. Chen, and X. Bao, “System outage probability due to the combined effect of PMD and PDL,” J. Lightwave Technol., vol. 20, no. 10, pp. 1805–1808, Oct. 2002.

[41] J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, JohnWiley and Suns, Inc , 1992.

[42] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode Fibers,” J. Lightwave Technol., vol. 9, pp. 1439-1456, Nov. 1991.

[43] K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett., vol. 29, no. 12, pp.1081-1083, June 1993.

[44] P. Wysocki and V. Mazurczyk, “Polarization dependent gain in Erbium doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol., vol.14, no. 4, pp.572-584, Apr. 1996.

[45] S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol., vol. 20, no. 6, pp. 975-985, June 2002.

[46] M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 686-688, Feb. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top