|
[1] S. Imre and F. Bal’azs, Quantum Computing and Communication. John Wiley and sons, 2005. [2] M. A. Nielsen and I. L. Chuang,Quantum Computation and Quantum Information. Cambridge University Press, 2002. [3] P. Shor, “Algorithms for quantum computation: discrete logarithms andfactoring,” in Proc. of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124-134, 1994. [4] L. Grover, “A fast quantum mechanical algorithm for database search,” in Proc. of the 28th Annual ACM Symposium on the Theory of Computing, pp.212-219, 1996. [5] http://domino.research.ibm.com/comm/pr.nsf/pages/news.html [6] http://www.dwavesys.com/ [7] C. Durr and P. Hφyer, “ A quantum algorithm for finding the minimum,” Quantum Physics, preprint (available at http://xxx.lanl.gov/abs/quantph/ 9607014), 1996. [8] 吳文榮, The Study of The Quantum k-th Smallest Number Problem. 義守大 學資訊工程研究所碩士論文, 2003. [9] S. Okubo, T. Nishino, K. Ohta and N. Kunihiro, “A quantum algorithm for finding the minimum on NMR quantum computers” ERATO Workshop on Quantum Information Science, pp.152-153, 2004. [10] T. Kailath and A. Paulraj,“Increasing capacity in wireless broadcast systems using distributed trasmission/directional reception (DTDR),” U.S. Patent 5 345 599, 1994. [11] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple antennas,” Bell Labs Syst. Tech. J., vol. 1, p. 41-59, 1996. [12] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, no. 3, pp. 311-335, 1998. [13] J. Preskill, Lecture Notes for Physics 229: Quantum information and computation. California Institute of Technology, 1998. [14] A.Barenco, “A universal two-bit gate for quantum computation,”Proc. Roy. Soc. Lond. A, vol. 449, pp. 679-683, 1995. [15] D. Dectsch, “Quantum computational networks,” Proc. Roy. Soc. Lond. A, vol. 425, pp. 73-99, 1989. [16] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,“Elementary gates for quantum computation” Physical Review A, vol. 52(5), pp. 3457-3467, Nov. 1995. [17] E. Arikan, “An information-theoretic analysis of Grover’s algorithm,” IEEE ISIT,Yokohama, Japan, June 29-July 4,2003. [18] L.K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical Rev. Letters, vol. 79, no. 2, pp.325-328, 1997. [19] G. Brassard, “Searching a quantum phone book,” Science, vol.275, p. 627, 1997. [20] C. P. Williams. “Quantum search algorithms in science and engineering,” IEEE Computing in Science and Engineering, 3(2):44-51, March-April, 2001. [21] C. Zalka, “using Grover’s quantum algorithm for searching actual databases,” Physical Rev. A, vol. 62, pp 052305¡1-052305¡4, 2000. [22] M. Boyer, G. Brassard, P. Hoyer and A. Tapp, “Tight bounds on quantum searching,” Fortschritte Der Physik, vol.46, pp. 493-505 1998. [23] G. Brassard, P. Hoyer and A. Tapp, “Quantum counting,” Proc. 25th International Colloquium on Automata, Languages, and ProgrammingLecture Notes of Computer Science 1443, Springer-Verlag, Berlin, pp. 820-831, 1998 . [24] A. Ambainis, Quantum search algorithms, Technical Report arXiv:quantph/ 0504012, 2005. [25] A. Gorokhov, D. Gore, and A. Paulraj, “Receive antenna selection for MIMO flat-fading channels: Theory and algorithms,” IEEE Trans. Inform. Theory, vol. 49, pp. 2687-2696, Oct. 2003. [26] X. Kai, L. Tao, Y. Chang-chuan, and Y. Guang-xin, “Transmit antenna selection for MIMO systems,” Proceedings of the IEEE 6th circuits and systems symposium, vol. 02, pp. 701-704, June 2004. [27] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE Communications Magazine, vol. 42, no. 10, pp. 68.73, Oct. 2004. [28] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,” IEEE Microw. Mag., vol. 5, pp. 46-56, Mar. 2004. [29] H. M. Chen, P. H. Chen, K. L. Yeh, W. H. Fang, M. C. Shie, and F. Lai, “Center of mass-based adaptive fast block motion estimation,” EURASIP Journal on Image and Video Processing, vol. 2007, 11 pages, 2007. [30] A. M. Tekalp, Digital Video Processing. Prentice Hall, 1995. [31] T. Ebrahimi, E. Reusens, and W. Li, “New trends in very low bitrate video coding,” IEEE Proc., vol. 83, no. 6, pp. 877-891, June 1995. [32] K.Aizawa, T. S. Huang, ”Model-based image coding : advanced video coding techniques for very low bit-rate applications,” IEEE Proc., vol. 83, no. 2, pp. 259-271, Feb. 1995. [33] M. J. Chen, L. G. Chen, and T. D. Chiueh, ”One-dimensional full search motion estimation algorithm for video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 5, pp. 504-509, Oct. 1994. [34] K. R. Rao and J. J. Hwang, Techniques and Standards for Image, Video, Audio coding. Prentice Hall, 1996. [35] L. M. Po and W. C. Ma, ”A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 313-317, June 1996. [36] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, ”A novel unrestricted center-based diamond search algorithm for block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 4, pp. 369-377, Aug. 1998. [37] D. R. Walker and K. R. Rao, “Motion-compensated coder,” IEEE Trans. Commun., vol. 35, no. 11, Nov. 1987. [38] Y. Yokoyama, Y. Miyamoto, and M. Ohta, “Very low bit rate video coding using arbitrarily shaped region-based motion compensation,” IEEE Trans. Circuit Syst. Video Technol., vol. 5, no. 6, pp.500-507, Dec. 1995. [39] P. Salembier, L. Torres, F. Meyer, and C. Gu, “Region-based video coding using mathematical morphology,” IEEE Proc., vol. 83, no. 6, pp. 843-857, June 1995. [40] S. A. Seyedin and C. J. E. Philips, “Motion estimation using the radon transform in dynamic scenes,” SPIE, vol. 2501, pp. 137-1348,May 1995. [41] L. Wu, J. Bemois-Pineau, P. Delagnes, D. Barba, “Spectial-temporal segmentation of image sequences for object-oriented low bit-rate image coding,” Signal Processing: Image Commun, vol. 8, pp. 513-543, 1996.
|