跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃金榮
研究生(外文):Chin-Jung Huang
論文名稱:不確定規則式知識衝突與加值處理推論模式
論文名稱(外文):Conflicting and Value Added Treatment Inference Model for Uncertainty Rule-based Knowledge
指導教授:鄭明淵鄭明淵引用關係
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:138
中文關鍵詞:條件機率群體決策確定信賴指數衝突處理加值處理
外文關鍵詞:Conditional ProbabilityGroup DecisionCertainty Reliable IndexConflicting TreatmentValue Added Treatment
相關次數:
  • 被引用被引用:3
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
知識的累積過程中,由於知識庫中知識來源不同,專家意見不一,導致知識庫中知識存在相同意義、衝突或數據不一致。並隨時空環境改變,新技術、新法規、新方法、新證據產生等因素,可能產生知識不適用等情況。建立規則式知識庫專家系統往往著重於規則基礎之結構錯誤驗證,對於衝突規則處理大都以指定規則執行先後次序解決。至於規則中存在的衝突或對應數值大小不一或重覆的處理,尚未有妥適處理方法。由於不確定知識本身存在不確定性,所以其衝突規則處理更顯困難。而引用錯誤的知識,會導致錯誤的決策,94%使用者認為引用衝突或重覆規則存在困擾,確認所引用知識的存在確定及信賴程度是必要的。
本研究提出「條件機率知識相似度演算法」,發展「規則知識相似度計算系統」,有效、準確地求得知識相似度矩陣,擷取具有衝突與重疊知識。針對衝突與重疊知識,整合群體決策及不確定推理觀念,提出「不確定規則知識衝突處理推論模式」,本模式以信賴指數表示存在衝突或重疊或對應數據大小不一知識的信賴程度;以確定指數顯示知識是否確定存在程度;而確定信賴指數則用以綜合顯示衝突知識之確定存在及被信賴程度。再依據知識關聯性,提出「不確定規則知識加值處理推論模式」,本模式針對具有關聯規則群集,經合併、整合、創新、尋找、刪除及新增等加值處理推論,使原有的衝突規則或創新的規則,都明確顯示其確定信賴指數,因此,92%使用者認為選用較高確定信賴指數的規則,對於知識應用與輔助決策有幫助,可減少錯誤決策,提升知識應用之附加價值,使知識應用更有效益。
In the process of knowledge accumulation, due to the difference of knowledge source in the knowledge base and opinions of experts, the knowledge in the knowledge base would have inconsistency with the same meaning, conflict and data, which may lead to an improperness of knowledge use as a result of change of time, new technology, new regulation, new methodology and new evidence and other factors. Rule-based knowledge base expert systems have traditionally emphasized the verification of structural errors in the rule base. For conflicting or overlapping rules, designated rules are usually followed to implement prioritized or direct deletions. However, there exist no proper methods by which to resolve conflicts, inconsistencies or redundancies in value. Due to the uncertainty of uncertain knowledge itself, it is difficult to treat conflicting rules, and the citation of erroneous knowledge leads to mistakes in decision making. Among users, 94% report perplexity when conflicting or redundant rules are cited. It is therefore a necessity to confirm the existence and reliability of the cited knowledge.
This study proposes integrates methods of conditional probability, and vector matrices to establish a conditional probability knowledge similarity algorithm and calculation system. This calculation system can quickly and accurately calculate rule-based knowledge similarity matrices and capture the conflicting rules and redundant rules. For the conflicting rules and redundant rules, the current study attempts to provide an uncertainty rule-based knowledge conflict treatment inference model by integrating a group decision and an uncertainty inference. In the model, a “reliable factor” refers to the reliability level of the knowledge containing conflicts, redundancies or inconsistencies in values, while the “certainty factor” indicates the existence of the knowledge itself. A “certainty reliable index” is used to show both the existence of the knowledge itself and its reliability. Based on knowledge relationship, a rule-based uncertainty knowledge value-adding treatment inference model is established to perform value-adding treatment such as merge, integration, innovate, search, delete, and add, so that certainty reliable indexes of the rules can be obviously represented, For conflicting or overlapping knowledge, it is suggested that the knowledge with a higher certainty reliable index be chosen. Among users, 92% reported that the model is helpful to knowledge application and an aid to the decision-making process. It can more effectively prevent mistakes in decision making and enables users to acquire more benefits from the knowledge application.
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究範圍與限制 4
1.4研究內容 5
1.5研究步驟 6
1.6 論文架構 7
第二章 文獻回顧 9
2.1知識表示 9
2.2相似度計算方法 11
2.3重覆規則及衝突規則 12
2.4不確定性表示方法 13
2.5知識衝突或重疊處理方法 14
2.6知識加值及再利用處理方法 15
第三章 規則式知識相似度計算 17
3.1規則式知識表示成RO-RA-RV格式 18
3.2 RO-RA-RV各分量之轉換對應 20
3.3條件機率知識相似度演算法 32
3.3.1知識相似度計算 32
3.3.2知識相似度矩陣 35
3.3.3條件機率知識相似度演算法 35
3.4 小結 41
第四章 規則式知識相似度計算系統及知識關聯 43
4.1規則式知識相似度計算系統 43
4.2知識關聯 45
4.3 小結 50
第五章 不確定規則知識衝突處理推論模式 51
5.1信賴指數理論 53
5.2確定指數理論 63
5.3確定信賴指數理論 65
5.4 不確定規則式知識衝突處理演算法及架構 67
5.5不確定知識選用突處理推論模式及架構 69
5.6實例模擬與知識選用 69
5.6.1實例模擬 69
5.6.2 知識選用 73
5.7小結 76
第六章 不確定規則知識加值處理推論模式 78
6.1知識加值處理的涵義 78
6.2不確定性規則式知識加值處理推論演算法 80
6.2.1信賴指數 80
6.2.2確定指數 82
6.2.3確定信賴指數 88
6.2.4不確定特殊關聯知識加值處理推論 88
6.3不確定知識加值處理演算法 95
6.4不確定規則知識加值處理推論模式及架構 96
6.5衝突處理與加值處理實例比較 97
6.6小結 99
第七章 結論與建議 100
7.1結論 100
7.1.1規則式知識相似度計算方法之結論 100
7.1.2規則式知識相似度計算系統及知識關聯之結論 100
7.1.3知識衝突處理推論之結論 101
7.1.4知識加值處理推論之結論 101
7.2建議 103
參考文獻 105
附錄一 Ⅰ-1
附錄二 Ⅱ-1
英文部份
[1] D. L. Nazareth, “Issues in the Verification of Knowledge in Rule-Based Systems,” Int. Journal Man-Machine Studies, Vol. 30, No. 3, 1989, pp. 255-271.
[2] J. R. Geissman and R. D. Schultz, “Verification and Validation of Expert Systems,” AI Expert, Vol.3, No.2, 1988, pp. 26-33.
[3] M. Suwa, A. C. Scott. and E. H. Shortliffe, “An Approach to Verifying Completeness and Consistency in Rule-Based Expert Systems,” AI Magazine, Vol. 3, No. 2, 1982, pp. 16-21.
[4] T. A. Nauyan, W. A. Perkins, T. J. Laffey, and D. Pecora, “An Approach to Verifying Completeness and Consistency in Rule-Based Expert Systems,” AI Magazine, 1987, pp. 69-75.
[5] W. T. Tsai, R. Vishnuvajjala and D. Zhang, “Verification and Validation of Knowledge-Based Systems,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999, pp. 202-212.
[6] Michael Negnevitsky (2002), Artificial Intelligence, USA:Addison-Wesley Co.
[7] M. Minsky, A Framework for Representing Knowledge, The Psychology of Computer Vision, Patrick Winston, McGraw-Hill, 1975, pp. 211-217.
[8] M. R. Quillian, “Semantic Memory ,” Semantic Information Processing, MIT Press, 1968, pp. 227-270.
[9] P. E. van der Vet and N. J. I. Mars, “Bottom-up construction of ontologies,” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 4, 1998, pp. 543-526.
[10] Zhang, J., & Korfhage, R. R. (1999), “A distance and angle similarity measure,” Journal of the American Society for Information Science, Vol.50, No. 9, pp.772-778.
[11] Falkowski, B. J. (1998), “On certain generalizations of inner product similarity measures,” Journal of the American Society for Information Science, Vol. 49, No.9, pp.854-858.
[12] Jin Zhang, Edie M. Rasmussen (2001), “Developing a new similarity from two different perspectives,” Informatiom Processing and Management, Vol. 37, No. 1, pp. 279-294.
[13] Frank Candocia and Malek Adjouadi (1997), “A Similarity Measure for Stereo Feature Matching,” IEEE Transactions on Image Processing, Vol. 6, No. 10, pp.1460–1464
[14] Chen, S. M., M. S. Yeh and P. Y. Hsiao (1995), “A comparison of similarity measures of fuzzy values,” Fuzzy Sets and Systems, Vol.72, Issue: 1, pp.79-89.
[15] Na Liu a, Tian-ming. Wang (2005), “A relative similarity measure for the similarity analysis
[16] L. A. Zadeh, “Fuzzy Sets,” Information Contr., Vol. 8, 1965, pp. 338-358.
[17] L. A. Zadeh, “Fuzzy Logic,” IEEE Computer, Vol. 21, No. 4, 1988, pp. 83-93.
[18] B. J. Cragun and H. J. Steudel, “A decision–table-based processor for checking completeness and consistency in rule-based expert systems,” Int. Journal Man-Machine Studies, Vol. 26, No. 5, 1987, pp. 633-648.
[19] D. Zhang and D. Nguyen, “A Tool for Knowledge Base Verification,” IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 6, 1994, pp. 983-989.
[20] T. Murata, “Petri Nets: Proteries, Analysis and Applications,” in Proceeding of the IEEE, Vol. 77, No. 4, 1998, pp. 541-580.
[21] Kunhuang Huarng, Dick B. Simmons (1996), “An Object Knowledge Canonical Form for Knowledge Reus,” Expert System With Applications, Vol. 10, No. 1, pp.135–146
[22] M. Lynne Markus (2001), “Toward a Theory of Knowledge Reuse: Types of Knowledge Reuse Situations and Factors in Reuse Success,” Journal of the Management Information Systems, Vol. 18, No.1, pp.57-93.
[23] Ron Hyson (2001), “Adding value to enterprise modeling,” AI Expert, Vol.3, No.2, pp.26-33.
[24] Gopika Kannan and K.B. Akhilesh (2002), “Human capital knowledge value added A case study in infotech,” Journal of Intellectual Capital, Vol. 3, No.2, pp.167-179.
[25] S. M. Chen, "Knowledge representation and fuzzy reasoning using fuzzy deduction graphs," Journal of Computers, Vol. 16, No. 4, 2004, pp. 29-40.
[26] C. J. Huang, M. Y. Cheng, “Using Conditional Probability to Measure Rule-based Knowledge Similarity,” in Proceeding of The Eighteenth International Conference on Software Engineering and Knowledge Engineering (SEKE), 2006, pp.41-44.
[27] C. J. Huang, Y. H. Lin, “Rule-based Knowledge Similarity Distance Calculation System -Using Conditional Probability Knowledge Similarity Algorithm,” in Proceeding of The 2005 International Workshop on Distance Education Technologies, 2005, pp. 458-463.
[28] E. H. Shortliffe and B. G. Buchanan, “A Model of inexact reasoning in medicine,” Mathematical Biosciences, Vol. 23, No. 3, 1975, pp. 351-379.
[29] L. A. Zadeh, “The Calculus of Fuzzy If/Then Rules,” AI Expert, 1992, pp. 23-27.
[30] J. Durkin, “Expert Systems Design and Development,” Prentice Hall, Englewood Cliffs , NJ, 1994.

中文部份
[31]吳志宏,「法則基專家系統知識庫的驗證」,國立中山大學電機工程研究所博士論文,民國八十五年六月。
[32]劉翔銘,「模糊知識驗證演算法之研究與實證」,國立暨南大學資訊管理研究所碩士論文,民國九十三年六月。
[33]鄭成斌,「將派翠網路分析方法應用在不確定規則系統的錯誤偵測與邏輯推論」,國立中央大學資訊工程研究所碩士論文,民國八十八年六月。
[34]陳信宏,「解決案例式推論中多專家間知識衝突之模式探討」,國立政治大學資訊管理研究所碩士論文,民國九十二年六月。
[35]林川煥,「模糊集相似性測度性質與其應用之研究」,南台科技大學工業管理研究所碩士論文,民國九十三年六月。
[36]王仁宏,「災害復原規劃之知識表演及推理法則研究」,國立中央大學資訊管理研究所碩士論文,民國九十二年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top