跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃暐晴
研究生(外文):Wei-Ching Huang
論文名稱:藍光及滲透逆境誘導甘藷癒創組織表現β-澱粉酶的機制探討
論文名稱(外文):The mechanisms of β-amylase expressing in the sweet potato callus exposed to blue light and osmotic stress condition
指導教授:王恆隆
指導教授(外文):Heng-Long Wang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:83
中文關鍵詞:b-澱粉酶過氧化氫發光二極體光質滲透逆境甘藷癒創組織
外文關鍵詞:β-amylasehydrogen peroxidelight emitting diodelight qualityosmotic stresssweet potato callus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:1
β-澱粉酶 (β-amylase,EC 3.2.1.2) 屬於一種外切苷酶 (exoglycosidase)的特性已為人熟知,然而其生理意義尚未明確瞭解。綜合以前的文獻結果皆顯示,逆境誘導β-澱粉酶活性必須要有光照。由於前人研究的光源都是以全光為主,因此本論文進一步利用發光二極體 (Light Emitting Diode; LED) 提供不同的光質條件,探討不同光質對甘藷癒創組織表現β-澱粉酶的影響,同時透過不同試劑的處理,探討誘導β-澱粉酶表現的訊息傳遞機制及其生理意義。
甘藷癒創組織在藍光照射下,β-澱粉酶活性的表現明顯高於紅光或遠紅光處理。同時給予藍光及滲透逆境 (8% w/v,蔗糖)處理,對甘藷細胞表現β-澱粉酶活性有顯著的加成效應。同樣地,RT-PCR、酵素活性分析、膠體活性染色及西方墨點法的經時變化結果得知,藍光及滲透逆境誘導β-澱粉酶的表現皆顯著高於黑暗處理,並伴隨麥芽糖的累積。由於文獻指出,麥芽糖具有可親和溶質的特性,因此合理推論β-澱粉酶可能具有防衛性功能的角色。由於 cycloheximide (100 μM)可以抑制80%以上的β-澱粉酶活性,因此藍光誘導甘藷癒創組織累積β-澱粉酶可能是透過重新合成。外加 NADPH 氧化酶抑制劑– diphenylene iodonium (2 μM) 確實減少細胞內過氧化氫 (hydrogen peroxide, H2O2)的含量,同時抑制藍光誘導β-澱粉酶70%的表現。經時變化的結果除了顯示 H2O2 的含量變化與β-澱粉酶轉錄表現有一致性外,藍光處理的細胞在抗氧化相關酵素,例如 superoxide dismutase (EC 1.15.1.1)、catalase (EC 1.11.1.6)及 peroxidase (EC 1.11.1.7)的表現亦明顯高於黑暗處理。因此,甘藷細胞在藍光照射下透過 H2O2 活化β-澱粉酶的表現。由於不論提高光照頻率 (從60至180 Hz)或光照強度 (從15至75 μmole-2s-1)並不會改變β-澱粉酶的表現。β-澱粉酶的表現不受 DCMU (2 μM)的影響,但 methyl viologen (2 μM)則明顯抑制,因此推測藍光可能僅是一種訊息,而且藍光誘導甘藷癒創組織表現β-澱粉酶可能與光合系統Ⅰ的作用有關。
雖然茉莉酸與水楊酸皆屬於防禦性荷爾蒙,然而β-澱粉酶的表現會受到水楊酸抑制;相對地,茉莉酸則顯著增加細胞內的 H2O2 含量及表現β-澱粉酶。此結果除了進一步確認 H2O2 與甘藷癒創組織表現β-澱粉酶的相關性以及β-澱粉酶具有防禦性蛋白的功能。
β-Amylase (EC 3.2.1.2) is well-known to the activity of exoglycosidases; however, its true physiological significance is not completely known. According to the results of previous reports, stress-induced β-amylase was dependent on light. Due to full light was adopted in previous studies, in this thesis, the specific light quality supported by light emitting diode was used to investigate the effect of light quality on the expression of β-amylase of sweet potato callus. Meanwhile, the pharmacological study was also used to deduce the signal transduction pathway about β-amylase induction and its physiological significance.
Under osmotic stress [8% (w/v), sucrose] condition, the calli exposed to blue light (30 μmole m-2s-1) showed the activity of β-amylase was significantly higher than that of red and far-red light irradiation. Compared with dark treatment, the results of time course analysis, such as RT-PCR, activity assay, Native-PAGE staining and Western blot, all showed that blue light stimulated β-amylase expression at the transcriptional and translational levels, then, caused the blue light-grown calli had a higher maltose content. Maltose has been reported to have compatible solute properties, it is reasonable to deduce that β-amylase may have role in the defense function. Since the activity of β-amylase was inhibited by cycloheximide (100 μM) over 80%, suggesting that blue light induced β-amylase was via a de novo synthesis. Exogenous diphenylene iodonium (2 μM)‐ a inhibitor of NADPH oxidase, actually decreased the amount of hydrogen peroxide (H2O2) and simultaneously inhibited ca. 70% of the β-amylase activity. The changes of H2O2 content were also consistent with the expression of β-amylase in transcription level. Moreover, the activities of antioxidative-related enzymes, such as superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) in blue light condition all were stimulated. Hence, H2O2 seemingly acts as a mediator for the activation of β-amylase in sweet potato callus under blue light irradiation. In addition, the activity of β-amylase did not effect by rising the light frequency (from 60 to 180 Hz) or intensity (from 15 to 75 μmole-2s-1), and by DCMU (2 μM), but it was obviously inhibited by methyl viologen (2 μM). These data strongly imply that blue light just acts as a signal to induce the expression of β-amylase in sweet potato callus, and this inductive phenomenon is closely correlated with potosystem I.
Jasmonic acid (JA) and salicylic acid (SA) both belong to a defensive hormone. Salicylic acid inhibited the expression of β-amylase in sweet potato cells. By contrast, JA not merely increased β-amylase activity, but also enhanced H2O2 level. These results further confirm that β-amylase plays a defensive role and its expression is linked with H2O2.
頁次
謝誌------------------------------------------------------------------I
目錄------------------------------------------------------------------II
表目錄----------------------------------------------------------------Ⅴ
圖目錄----------------------------------------------------------------Ⅵ
縮寫表----------------------------------------------------------------Ⅷ
中文摘要---------------------------------------------------------------1
英文摘要---------------------------------------------------------------2
第一章 前言 -----------------------------------------------------------4
1.1 甘藷的簡介---------------------------------------------------------4
1.2 文獻回顧-----------------------------------------------------------5
1.2.1 植物中β-澱粉酶的作用與角色--------------------------------------5
1.2.2 不同光質對植物生長與生理方面的影響------------------------------7
1.2.3 發光二極體的基本原理及在植物上的應用-----------------------------7
1.2.4 植物的防禦機制與調控---------------------------------------------9
1.3 研究動機與目的----------------------------------------------------15
第二章 材料與方法 ----------------------------------------------------16
2.1 實驗材料----------------------------------------------------------16
2.2 試劑處理----------------------------------------------------------16
2.3 甘藷癒創組織之β-澱粉酶的分析--------------------------------------17
2.3.1 酵素液的萃取---------------------------------------------------17
2.3.2 β-澱粉酶活性分析-----------------------------------------------17
2.3.2.1 試管分析----------------------------------------------------17
2.3.2.2 Native-PAGE 膠體電泳活性分析--------------------------------18
2.3.3 西方墨點法-----------------------------------------------------19
2.4 甘藷癒創組織之 RT-PCR 分析----------------------------------------21
2.4.1 Total RNA 的萃取-----------------------------------------------21
2.4.2 反轉錄聚合連鎖反應---------------------------------------------23
2.5 抗氧化酵素活性分析------------------------------------------------26
2.5.1 超氧歧化酶之萃取與活性分析-------------------------------------26
2.5.2 Catalase 之萃取與活性分析酵素活性分析--------------------------28
2.5.3 過氧化酶之萃取與活性分析---------------------------------------28
2.6 蛋白質定量--------------------------------------------------------29
2.7 甘藷癒創組織之 H2O2 含量測定--------------------------------------30
2.8 碳水化合物分析----------------------------------------------------31
2.8.1 可溶性醣的萃取-------------------------------------------------31
2.8.2 醣類成份的分析-------------------------------------------------32
第三章 結果 ----------------------------------------------------------37
3.1 不同光質誘導甘藷癒創組織表現β-澱粉酶的影響------------------------37
3.2 藍光及滲透逆境對甘藷癒創組織生長及β-澱粉酶表現的影響--------------37
3.3 不同試劑處理對甘藷癒創組織表現β-澱粉酶的影響----------------------39
3.4 活氧化物對甘藷癒創組織表現β-澱粉酶的影響--------------------------40
3.5 抗氧化相關酵素活性分析--------------------------------------------40
3.6 外加 JA 及 SA 對甘藷癒創組織表現β-澱粉酶的影響--------------------41
第四章 討論-----------------------------------------------------------62
第五章 結論-----------------------------------------------------------65
第六章 參考文獻-------------------------------------------------------67
李光軒 (1997) 調整光質的方法及其對波士頓萵苣種苗栽培之影響。農業
機械工程學系國立台灣大學碩士論文。
侯金日、楊雅斯及王淑敏 (1999) 不同光質對兩種鬼針屬 (Bidens)植物種
子發芽之影響。中華民國雜草學會會刊。20, 39-54
許欣正 (2002) 光質對組培苗生長影響之研究。國立中興大學農業機械工
程學系碩士論文。
饒瑞佶 (2003) 發光二極體應用於蝴蝶蘭、彩色海芋與馬鈴薯組織培養之
研究。國立臺灣大學生物產業機電工程學研究所博士論文。
紀佳慧 (2004) 光質處理對番茄苗株生長與發育之影響。國立中興大學園
藝學系碩士論文。
黃瀚毅 (2006) 高速氮化鎵發光二極體。國立中央大學電機工程研究所碩
士論文。
曾雅楨 (2006) 長期加溫與短期夜間涼溫對蝴蝶蘭生理生化性質的影響
。國立高雄大學生物科技研究所碩士論文。
Aldridge, D.C., Galt, S., Giles, D. and Turner, W.B. (1971) Metabolites of
Lasiodiplodia theobromae. J Chem Soc C. 1623–1627.
Alvarez, M.E., Penell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A. and Lamb,
C. (1998). Reactive oxygen intermediates mediate a systemic signal
network in the establishment of plant immunity.Cell. 92, 773–784.
Bethke, P.C., Badger, M.R., Jones, R. (2004) Apoplastic synthesis of nitric
oxide by plant tissues. Plant Cell. 16, 332-341.
Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. and Neill, S.J. (2000) NO
way back: nitric oxide and programmed cell death in Arabidopsis thaliana
suspension cultures. Plant J. 24, 667-677.
Crawford, N.M. and Guo, F.Q. (2005) New insights into nitric oxide
metabolism and regulatory functions. Trends Plant Sci. 10, 195-200.
Creelman, R.A. and Mullet, J.E. (1997) Biosynthesis and action of
jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol.. 48, 355-381.
Datta, R., Selvi, M.T., Seetharama, N. and Sharma, R. (1999) Stress-mediated
enhancement of beta-amylase activity in pearl millet and maize leaves is
dependent on light. J Plant Physiol.154, 657-664.
Dat, J., Vandenabeele, S., Vranova, E., Van, M.M., Inze, D. and Van, B.F.
(2000) Dual action of the active oxygen species during plant stress
responses. Cell Mol Life Sci. 57, 779–795.
Delledonne, M., Xia, Y., Dixon, R.A. and Lamb, C. (1998) Nitric oxide
functions as a signal in plant disease resistance. Nature 394, 585–588
Dong, X. (1998) SA, JA, ethylene, and disease resistance in plants.
Curr Opin Plant Biol. 1, 316-323.
Eskins, K., Warner, K. and Felker, F.C. (1996) Light quality during early
seedling development influences the morphology and bitter taste intensity
of mature lettuce (Lactuca sativa) leaves. J Plant Physiol. 147, 709-713.
Folta, K.M., Koss, L.L., McMorrow, R., Kim, H.H., Kenitz, J.D., Wheeler, R.,
and Sager, J.C. (2005) Design and fabrication of adjustable red-green-blue
LED light arrays for plant research. BMC Plant Biol.5:17
Gana, J.A., Kalengamaliro, N.E., Cunningham, S.M. and Volenec, J.J. (1998)
Expression of β-amylase from alfalfa taproots. Plant Physiol. 118,
1495-1505.
Gao, X.P., Wang, X.F., Lu, Y.F., Zhang, L.Y., Shen, Y.Y., Liang, Z. and
Zhang, D.P. (2004) Jasmonic acid is involved in the water-stress induced
betaine accumulation in pear leaves. Plant Cell Environ. 27, 497–507.
Giese, H. and Heigaard, J. (1984) Synthesis of salt-soluble proteins in barley.
Pulse-labeling study of grain filling in liquid-cultured detached spikes.
Planta. 161, 172-177.
Goins, G.D., Yorio, N.C., Sanwo, M.M. and Brown, C.S. (1997)
Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown
under red light-emitting diodes (LEDs) with and without supplemental blue
lighting. J Exp Bot. 48, 1407-1413.
Jensen, P.J., Hangarter, R.P. and Estelle, M. (1998) Auxin transport is
required for hypocotyl elongation in light-grown but not dark-grown
Arabidopsis. Plant Physiol. 116, 455-462.
Jiang, Z.Y., Woollard, A.C., and Wolff, S.P. (1990) Hydrogen peroxide
production during experimental protein glycation. FEBS Lett. 268, 69-71.
Jih, P.J., Chen, Y.C and Jeng, S.T. (2003) Involvement of hydrogen
peroxide and nitric oxide in expression of the Ipomoelin gene from sweet
potato. Plant Physiol. 132, 381–389.
Kaplan, F. and Guy, C.L. (2004) β-amylase induction and the protective role
of maltose during temperature shock. Plant Physiol. 135, 1674-1684.
Kaplan, F. and Guy, C.L. (2005) RNA interference of Arabidopsis
beta-amylase8 prevents maltose accumulation upon cold shock and
increases sensitivity of PSII photochemical efficiency to freezing stress.
Plant J. 44, 730-743.
Kaplan, F., Sung, D.Y. and Guy, C.L. (2006) Roles of β-amylase and starch
breakdown during temperatures stress. Physiol Plant. 126, 120-128.
Kato, M. and Shimizu. S. (1987). Chlorophyll metabolism in higher plants.
VII. Chlorophyll degradation in senescing tobacco leaves; phenolicdependent
peroxidative degradation. Can J Bot. 65, 729-735.
Kossmann, J. and Lloyd, J. (2000) Understanding and influencing starch
biochemistry. Crit Rev Biochem Mol Biol. 35, 141-196.
Lin, C.C. and Kao, C.H. (2002) Osmotic stress-induced changes in cell wall
peroxidase activity and hydrogen peroxide level in roots of rice
seedlings.Plant Growth Regul. 37, 177-184.
Lizotte, P.A., Henson, C.A. and Duke, S.H. (1990) Purification and
characterization of pea epicotyl β-amylase. Plant Physiol. 92, 615-621.
Mano, H., Ogasawara, F., Sato, K., Higo, H. and Minobe, Y. (2007) Isolation
of a regulatory gene of anthocyanin biosynthesis in tuberous roots of
purple-fleshed sweet potato. Plant Physiol. 143(3), 1252–1268.
Mata, C.G. and Lamattina, L. (2001) Nitric oxide induces stomatal closure
and enhances the adaptive plant responses against drought stress. Plant
Physiol. 126, 1196–1204.
Mita, S., Suzuki-Fujii, K. and Nakamura, K. (1995) Sugar-inducible
expression of a gene for β-Amylase in Arabidopsis thaliana. Plant Physiol.
107, 893-907.
Nakamura, K., Ohto, M., Yoshida, N. and Nakamura, K. (1991) Sucroseinduced
accumulation of beta-amylase occurs concomitant with the
accumulation of starch and sporamin in leaf-petiole cuttings of sweet
potato. Plant Physiol. 96, 902-909.
Nielsen, T.H., Deiting, U. and Stitt, M. (1997) A β-amylase in potato tubers is
induced by storage at low temperature. Plant Physiol. 113, 503-510.
Ohto, M.A., Nakamura, K.K. and Nakamura, K. (1992) Induction of
expression of genes coding for sporamin and beta-amylase by
polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol.
99, 422-427.
Orozco-Cárdenas, M.L., Narváez-Vásquez, J. and Ryan, C.A. (2001)
Hydrogen peroxide acts as a second messenger for the induction of defense
genes in tomato plants in response to wounding, systemin, and methyl
jasmonate. Plant Cell. 3, 179-191.
Orozco-Ca´rdenas, M.L. and Ryan, C.A. (2002) Nitric Oxide negatively
modulates wound signaling in tomato plants. Plant Physiol. 130, 487-493.
Paoletti, F. and Mocali, A. (1990) Determination of superoxide dismutase
activity by purely chemical system based on NAD(P)H Oxidation. Methods
Enzymol. 186, 209-220.
Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P. and Watkins, C.B. (1997)
lnfluence of salicylic acid on H2O2 production, oxidative stress, and
H2O2-metabolizing enzymes. Plant Physiol. 115, 137-149.
Rojo, E., Solano, R., and Sánchez-Serrano, J.J. (2003) Interactions between
signaling compounds involved in plant defense. J Plant Growth Regul. 22,
82–98.
Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.
Y. and Hunt, M.D. (1996) Systemic acquired resistance. Plant Cell. 8,
1809–1819.
Scheidig, A., Frohlich, A., Schulze, S., Lloyd, J.R. and Kossmann, J. (2002)
Down-regulation of a chloroplast-targeted beta-amylase leads to
starch-excess phenotype in leaves. Plant J. 30, 581-591.
Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A. and Lamb, C.
(1997) Salicylic acid potentiates an agonist-dependent gain control that
amplifies pathogen signals in the activation of defense mechanisms. Plant
Cell. 9, 261–270.
Simontacchi, M., Jasid, S. and Puntarulo, S. (2004) Nitric oxide generation
during early germination of sorghum seeds. Plant Sci. 167, 839-847.
Smith, S.M., Fulton, D.C., Chia, T., Thorneycroft, D., Chapple, A., Dunstan,
H., Hylton, C., Zeeman, S.C. and Smith, A.M. (2004) Diurnal changes in
the transcriptome encoding enzymes of starch metabolism provide
evidence for both transcriptional and posttranscriptional regulation of
starch metabolism in Arabidopsis leaves. Plant Physiol. 136, 2687-2699.
Spoel, S.H., Koornneef, A, Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A.,
Mueller, M.J. Buchala, A.J., Métraux, J.P., Brown, R., Kazan, K,. Van
Loon, L.C., Dong, X. and Pieterse, C.M.J. (2003) NPR1 modulates
cross-talk between salicylate- and jasmonate-dependent defense pathways
through a novel function in the cytosol. Plant Cell. 15, 760–770.
Takeda, S., Kowyama, Y., Takeuchi, K., Matsuoka, M., Nishimura, M. and
Nakamura, K. (1995) Spatial patterns of sucrose inducible and
polygalacturonic acid inducible expression of genes that encode sporamin
and β-amylase in sweet potato. Plant Cell Physiol. 36, 321-333.
Thomma, B.P., Penninckx, I.A., Broekaert, W.F., and Cammue, B.P. (2001).
The complexity of disease signaling in Arabidopsis. Curr Opin Immunol.
13, 63–68.
Todaka, D., Matsushima, H. and Morohashi, Y. (2000) Water stress enhances
β-amylase activity in cucumber cotyledons. J Exp Bot. 51, 739-745.
Van Damme, E.J.M., Hu, J., Barre, A., Hause, B., Baggerman, G., Rouge, P.
and Peumans, W.J. (2001) Purification, characterization,
immunolocalization and Structural analysis of the abundant cytoplasmic
β-amylase from Calystegia sepium (hedge bindweed) rhizomes. FEBS. 268,
6263-6273.
Verma, S. and Mishra, S.N. (2004) Putrescine alleviation of growth in salt
stressed Brassica juncea by inducing antioxidative defense system. J Plant
Physiol. 162, 669–677.
Wang, H.L., Lee, P.D., Juang, R.H. and Su, J.C. (1993) Starch accumulating
sweet potato callus tissue devoid of β-amylase but with two starch
phosphorylase isozymes. Biosci Biotech Biochem. 57, 1311-1315.
Wasternack, C., Miersch, O.,Kramell, R., Hause, B., Ward, J., Beale, M.,
Boland, W., Parthier, B. and Feussner, I. (1998) Jasmonic acid:
biosynthesis,signal transduction,gene expression. Fett/Lipid. 100, 139–146.
Wu, J. and Ge, X. (2004) Oxidative burst, jasmonic acid biosynthesis, and
taxol production induced by low-energy ultrasound in Taxus chinensis cell
suspension cultures. Biotechnol Bioeng. 85, NO. 7.
Zhang, H., Shen, W.B., Zhang, W and Xu, L.L. (2005) A rapid response of
β-amylase to nitric oxide but not gibberellin in wheat seeds during the early
stage of germination. Planta. 220, 708-716.
Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B. and Zhang, L. (2004) Nitric
oxide functions as a signal in salt resistance in the calluses from two
ecotypes of reed. Plant Physiol. 134, 849–857.
Zhao, M.G., Tian, Q.Y. and Zhang, W.H. (2007) Nitric oxide synthasedependent
nitric oxide production is associated with salt tolerance in
Arabidopsis. Plant Physiol. 144, 206–217.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top