跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李虹儒
研究生(外文):Hung-Ju Li
論文名稱:HIV盛行率之橫截數據在Cox對比風險模型下之分析
論文名稱(外文):Cox Proportional Hazards Model with Cross-Sectional HIV Prevalence Data
指導教授:黃錦輝黃錦輝引用關係
指導教授(外文):Kam-Fai Wong
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:20
中文關鍵詞:Cox 對比風險模型當前狀態數據最大概似估計法人類免疫缺陷病毒盛行率
外文關鍵詞:Cox Proportional Hazards ModelCurrent status dataMaximum likelihood estimationHIVPrevalence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
關於單一母體仍存活者感染HIV之感染率, Wong el al. (2006)提供一個基於HIV盛行率之橫截數據的估計法. 在該篇文章中, 他們利用此方法分析一筆來自南非 Cape Town 之橫截數據. 原作者把所蒐集的數據分成三個年齡層個別處裡. 因此, 在我們的研究中, 假定不同年齡層有不同的HIV風險函數但彼此之間滿足Cox對比風險模型. 之後, 應用半參數(semiparametric)方法估計所對應的風險參數. 在此, 基線風險函數(baseline hazards function)沒有任何參數假設.
Wong et al. (2006) proposed an estimating procedure to estimate the HIV hazards function of a single population when only HIV prevalence data are available over an extended period of time. The method was illustrated using HIV-prevalence data collected over four years among women in Cape Town, South africa by stratifying the data into three populations based on the age of the women. In this work, we assume women with different age may have different
HIV hazards function but proportional to each other. Then, a semiparametric approach is applied to estimate the risk parameters. No parametric assumptions of the baseline hazards function are required.
1Introduction 1
2Preliminaries 2
2.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . .2
2.2 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . . . . 3
3 The Statistical Model 4
4 The Trend of The Odds Function 7
5 Simulation Studies 11
6 Example 16
7 Discussion 18
References 20
[1] Aalen, O. O. (1980). A model for non-parametric regression analysis of counting processes. In Lecture Notes in Statistics-2: Mathematical Statistics and Probability Theory, Ed. W. Klonecki, A. Kozek and J. Rosinski, pp. 1-25. New York: Springer-Verlag.
[2] Box-Steffensmeier, Janet M. & Bradford S. Jones. (2004). Event History Modeling: A Guide for Social Scientists. New York: Cambridge University Press.
[3] Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 34, 187-220.
[4] Ding, A.A. & Wang, W. (2004). Testing independence for bivariate current status data. J. Am. Statist. Assoc. 99, 145-155.
[5] Gorfine, M., Hsu, L. & Prentice, R. L. (2004). Nonparametric correction for covariate measurement error in a stratified Cox model. Biostatistics. 5, 75-87.
[6] Klein, J.P. & Moeschberger, M.L. (2003). Survival Analysis: Techniques for Censored and Truncated Data, Springer-Verlag, New York, NY.
[7] Li, Z., Zhou, S., Choubey, S. & Sievenpiper C. (2007). Failure event prediction using the Cox proportional hazard model driven by frequent failure signatures. IIE Transactions. 39, 303-315.
[8] Scheike, T. H. & Juul A.(2004). Maximum likelihood estimation for Cox's regression model under nested case-control sampling. Biostatistics. 5, 193-206.
[9] Su, X. & Tsai, C. (2005). Tree-augmented Cox proportional hazards models. Biostatistics. 6, 486-499.
[10] Wong, K., Tsai, W. & Kuhn, L. (2006). Estimating HIV hazard rates from cross-sectional HIV prevalence data. Statist. Med. 25, 2441-2449.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文