|
[1] D. Ocone: Malliavin's calculus and stochastic integral representations of functionals of diffusion process, Stochastics. 12 (1984), 161-185. [2] J. M. C. Clark: The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Stat. 41 (1970), 1281-1295; Correction to the paper, Ann. Math. Stat. 42 (1971),1778. [3] Kuo, H.-H.: White Noise Distribution Theory, CRC Press, (1996). [4] Lee, Y.-J.: Generalized functions on infinite dimensional spaces and its application to white noise calculus, J. Funct. Anal. 82(1989), 429-464. [5] Lee, Y.-J.: On the convergence of Wiener{It^o decomposition, Bull. Inst. Math. Academia Sinica (Taiwan), 17(1989), 305-312. [6] Lee, Y.-J.: Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus, J. Func. Anal. 100(1991), 359-380. [7] Lee. Y.-J.: Transformation and Wiener{It^o decomposition of white noise functionals, Bull. Inst. Math. Academia Sinica (Taiwan), 21(1993), 279-291. [8] Lee, Y.-J.: Integral representation of second quantization and Its application to white noise analysis, J. Funct. Anal. 2(1995), 253-276. [9] Lee, Y.-J. and Shih, H.-H.: The clark formula of generalized Wiener functionals, Quantum Information, IV (2002), 127-145. [10] Lee. Y.-J. and Lin. Y.-C.: Conditional expectation of white noise functionals(2006). [11] M. de Faria, M. J. Oliveira, and L. Streit: A generalized Clark- Ocone formula, Random Operators & Stochastic Equations, 8 (2000), 163-174. [12] Ngobi, Said and Stan, Aurel: An extension of the Clark-Ocone formula. [13] U. Haussmann: On the integral representation of functionals of It^o processes, Stochastics. 3 (1979), 17-28.
|