跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉威呈
研究生(外文):Wei-Chen Yeh
論文名稱:白噪音分析在克拉克公式的應用
論文名稱(外文):White Noise Analysis Approach to Clark Formula
指導教授:李育嘉李育嘉引用關係
指導教授(外文):Yuh-Jia Lee
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:22
中文關鍵詞:白噪音分析克拉克公式布朗運動
外文關鍵詞:White Noise AnalysisClark FormulaBrownian motion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
布朗泛函以布朗運動隨機積分來表示是可被稱之為克拉克公式。在本論文中,我們致力於廣義白噪音泛函之克拉克公式表示。以廣義觀點來說,在區間I,如果存在一個核KF使得 F = E[F] + ∫I KF (t)dB(t), 等式經由S-轉換後等式兩邊相等,如此一來,一個廣義白噪音泛函就可用克拉克表示式來表述。在本文末節,我們給予一些例子來說明廣義白噪音泛函之克拉克表示式。
The representation of functionals of Brownian motion in terms of stochastic integral with respect to Brownian motion is known as Clark formula. In this paper, we are devoted to the derivation of Clark formula for a given generalized white noise functional. A generalized white noise functional F is said to have a Clark representation in the generalized sense on an interval I if there exist a kernel KF such that
F = E[F] + ∫I KF(t) dB(t), where the equality holds in the the generalized sense or, equivalently, the equality holds under the S-transform. Examples of Clark representation of generalized white noise functional are given in this paper.
中文摘要 ii
英文摘要 iii
1 Introduction 1
2 Test and generalized white noise functionals 2
3 The Clark formula for white noise functionals 4
4 Example 7
References 17
[1] D. Ocone: Malliavin's calculus and stochastic integral representations of functionals of diffusion process, Stochastics. 12 (1984), 161-185.
[2] J. M. C. Clark: The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Stat. 41 (1970), 1281-1295; Correction to the
paper, Ann. Math. Stat. 42 (1971),1778.
[3] Kuo, H.-H.: White Noise Distribution Theory, CRC Press, (1996).
[4] Lee, Y.-J.: Generalized functions on infinite dimensional spaces and its application to white noise calculus, J. Funct. Anal. 82(1989), 429-464.
[5] Lee, Y.-J.: On the convergence of Wiener{It^o decomposition, Bull. Inst. Math. Academia Sinica (Taiwan), 17(1989), 305-312.
[6] Lee, Y.-J.: Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus, J. Func. Anal. 100(1991), 359-380.
[7] Lee. Y.-J.: Transformation and Wiener{It^o decomposition of white noise functionals, Bull. Inst. Math. Academia Sinica (Taiwan), 21(1993), 279-291.
[8] Lee, Y.-J.: Integral representation of second quantization and Its application to white noise analysis, J. Funct. Anal. 2(1995), 253-276.
[9] Lee, Y.-J. and Shih, H.-H.: The clark formula of generalized Wiener functionals, Quantum Information, IV (2002), 127-145.
[10] Lee. Y.-J. and Lin. Y.-C.: Conditional expectation of white noise functionals(2006).
[11] M. de Faria, M. J. Oliveira, and L. Streit: A generalized Clark- Ocone formula, Random Operators & Stochastic Equations, 8 (2000), 163-174.
[12] Ngobi, Said and Stan, Aurel: An extension of the Clark-Ocone formula.
[13] U. Haussmann: On the integral representation of functionals of It^o processes, Stochastics. 3 (1979), 17-28.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top