(3.238.240.197) 您好!臺灣時間:2021/04/12 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昱舜
研究生(外文):Yu-Shuen Chen
論文名稱:整合基因演算法與類神經網路於股價走勢之預測
論文名稱(外文):Combination of neural network and GAs for forecasting the Taiwan stock market
指導教授:顧瑞祥顧瑞祥引用關係
指導教授(外文):Ruey-Shiang Guh
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:股票預測基因演算法類神經網路
外文關鍵詞:stock predictionartificial neural networkgenetic algorithm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:276
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在股價預測研究上分為三種理論學派:1. 基本分析學派、2. 隨機漫步理論學派、3. 技術分析學派。基本分析是透過總體經濟分析、產業分析、公司基本面分析三個步驟,定位該公司股票的實際合理價值;隨機漫步理論認為,股價複雜之程度近於隨機變化,極難預測,因此衍生出買入持有策略;而技術分析則只需針對供需的變動分析即可。在相關研究裡,以往較常使用的是時間序列、複迴歸分析等數量統計模型,但也因為運用數量統計模型,需做諸多的先前假設與限制,且也不符合屬於非線性型態之股票市場,故本研究以類神經網路中的倒傳遞網路為主,以技術指標作為類神經網路的輸入變數,並運用基因演算法決定網路架構與輸入變數組合,進行未來股價走勢之預測。研究資料係取自於台灣證券交易市場部份歷史資料,研究樣本共五十七支個股,資料範圍於1991年至2006年。本研究將預測模型分為四種,1. 探討在日、週、月不同週期之下,何種準確率為佳;2. 將個股以產業別做區分,探討在此模型下,何種類股其準確率為佳;3. 將個股以資本額大小做區分,探討在此模型下,何種準確率為佳;4. 縮短訓練資料,探討屬於時間序列之股價歷史資訊,捨去過於久遠的資訊,對其準確率的影響。研究結果顯示,預測週期以週、月之準確率較為理想;產業別以電子類股、紡織類股、塑膠類股為佳;在資本額方面,股本較大者,因不易受到市場炒作的影響,故網路學習較理想,準確率也會較佳;捨去過於久遠的資料,大部份都可以保持相同,甚至更好的準確率。本研究並結合了股票擇時與股票選擇,以台積電、正新個股進行模擬交易,計算總報酬率。模擬結果顯示,選股前後之總報酬皆超越買入持有策略。
In the research of stock price filed, it divided into three parts: fundamental analysis, random-walk theory and technical analysis. The fundamental analysis theory was focused on the reasonable value by three steps with macro-economical, industry analysis and corporation basis. In the random-walk theory, some researchers think that the stock price complexity was approximate to the condition of randomly. Therefore it needs to make strategy by buy and hold. The technique analysis is focused on the fluctuation of supply-demand. in relational research, they often use time series, multi-regression etc. but it needs to assume and some constricts. And it was not like the real stock market. In this thesis, we forecast the volatility of the stock with Back Propagation Neural Network, BPN, and try to decide the network structure and input variable set by genetic algorithm, GAs. There are 57 samples received form the Taiwan stock exchange corporation during 1991 to 2006. We divide the model into four categories. 1. To explore the accuracy during decade of daily, weekly and monthly; 2. To explain the model accuracy by industry; 3. To explain the model accuracy by capitalization; 4. To explore the history data by time series analysis and to abandon the far history data to reduce the training data size. The result show the forecasting decade accuracy are good with weekly and monthly data and in the industry with electric , textile and plastics industries. The accuracy is better with the large capitalization, because the large capitalization don’t effect with the market easily. In this thesis, the research integrated the stock time analysis. In addition, we simulate the examples with TSMC and CST Corporation to trade and calculate the total returns. The result of simulation shows the value of total returns exceeds the strategy of buy and hold.
中文摘要 ----------------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------------- ii
致謝 ----------------------------------------------------------------------- iii
目錄 ----------------------------------------------------------------------- iv
表目錄 ----------------------------------------------------------------------- vi
圖目錄 ----------------------------------------------------------------------- viii
符號說明 ----------------------------------------------------------------------- ix
第一章 緒論----------------------------------------------------------------- 1
1.1. 研究背景與動機-------------------------------------------------- 1
1.2. 研究方法----------------------------------------------------------- 3
1.3. 研究目的----------------------------------------------------------- 3
1.4. 研究範圍----------------------------------------------------------- 4
1.5. 研究限制----------------------------------------------------------- 5
1.6. 研究架構----------------------------------------------------------- 6
1.7. 論文架構----------------------------------------------------------- 7
第二章 文獻探討----------------------------------------------------------- 9
2.1. 股票市場----------------------------------------------------------- 9
2.1.1. 股票市場定義----------------------------------------------------- 9
2.1.2. 效率市場假說----------------------------------------------------- 9
2.1.3. 股市投資分析理論----------------------------------------------- 11
2.2. 技術分析之基本原則-------------------------------------------- 12
2.3. 技術分析之相關文獻-------------------------------------------- 13
2.4. 投資研究的分類-------------------------------------------------- 17
2.5. 類神經網路於股價預測之相關研究-------------------------- 18
2.6. 結合類神經網路與基因演算法於股價預測之研究-------- 19
第三章 股市技術分析指標----------------------------------------------- 22
第四章 基因演算法與類神經網路-------------------------------------- 38
4.1. 基因演算法-------------------------------------------------------- 38
4.1.1. 基因演算法簡介-------------------------------------------------- 38
4.1.2. 基因演算法運作流程-------------------------------------------- 39
4.1.3. 基因演算法之基本運算子相關介紹-------------------------- 41
4.1.4. 基因演算法之特性----------------------------------------------- 46
4.2. 類神經網路簡介-------------------------------------------------- 47
4.3. 類神經網路的基本架構----------------------------------------- 49
4.4. 類神經網路之種類----------------------------------------------- 51
4.5. 倒傳遞類神經網路----------------------------------------------- 53
4.5.1. 倒傳遞類神經網路簡介----------------------------------------- 53
4.5.2. 倒傳遞類神經網路之網路架構-------------------------------- 54
4.5.3. 倒傳遞類神經網路演算法-------------------------------------- 55
4.5.4. 倒傳遞類神經網路之參數-------------------------------------- 60
4.5.5. 類神經網路常見問題-------------------------------------------- 62
第五章 研究方法----------------------------------------------------------- 64
5.1. 基因類神經網路之理論與目的-------------------------------- 64
5.2. 資料來源與涵蓋範圍-------------------------------------------- 65
5.3. 基因類神經網路之輸入變數與輸出變數-------------------- 66
5.4. 基因類神經網路之參數設定----------------------------------- 68
5.5. 預測模型之建立-------------------------------------------------- 69
5.6. 績效評估----------------------------------------------------------- 74
第六章 實證結果與分析-------------------------------------------------- 76
6.1. 以週期區分之預測模型----------------------------------------- 76
6.2. 以類股區分之預測模型----------------------------------------- 77
6.3. 以資本額大小區分之預測模型-------------------------------- 78
6.4. 變動訓練資料期間之預測模型-------------------------------- 78
6.5. 模擬交易----------------------------------------------------------- 79
6.5.1. 進出場策略-------------------------------------------------------- 79
6.5.2. 選股策略----------------------------------------------------------- 79
6.5.3. 結果分析----------------------------------------------------------- 80
第七章 結論與建議-------------------------------------------------------- 87
7.1. 研究結論----------------------------------------------------------- 87
7.2. 未來研究方向與建議-------------------------------------------- 88
參考文獻 ----------------------------------------------------------------------- 90
附錄一 ----------------------------------------------------------------------- 94
1.王惠娟,結合灰色預測與演化式類神經網路建構台灣加權股價指數之預測模式,朝陽科技大學財務金融系研究所,碩士論文。
2.朱正修,2003,台灣股市與國際股市連動性之研究,國立成功大學統計學研究所,碩士論文。
3.林建成,2001,遺傳演化類神經網路於台灣股市預測與交易策略之研究,東吳大學經濟學系研究所,碩士論文。
4.林國平,2002,模糊類神經系統於股市股價預測之應用,大葉大學工業工程學系研究所,碩士論文。
5.杜金龍,1996,基本分析在台灣股市應用的訣竅,金錢文化,台北。
6.杜金龍,1996,技術分析在台灣股市應用的訣竅,金錢文化,台北。
7.李良俊,2002,台灣股票市場技術分析有效性之研究,實踐大學企業管理研究所,碩士論文。
8.李沃牆,1998,計算智慧在選擇權定價上的發展----人工神經網路、遺傳規劃、遺傳演算法,國立政治大學經濟研究所,博士論文。
9.洪俊瑋,2003,以建諸於移動平均法之類神經模糊系統預測股價指數之變動,靜宜大學企業管理研究所,碩士論文。
10.吳孟儒,2000,以輸入資訊內涵觀點構建台灣股價指數類神經預測之研究,義守大學管理科學研究所,碩士論文。
11.許智和,2002,運用基因演算法搜尋最佳化技術指標之台灣股市實證研究,國立雲林科技大學資訊管理研究所,碩士論文。
12.施惠萍,1999,結構性變化的偵測與其在技術分析中的應用,國立台灣大學經濟學研究所,未出版碩士論文。
13.張振魁,1999,以類神經網路提高股票單日交易策略之獲利,國立中央大學資訊管理研究所,碩士論文。
14.陳正榮,2000,以濾嘴法則檢驗台灣股票市場弱式效率性之研究,國立高雄第一科技大學財務管理研究所,碩士論文。
15.陳建全,1998,台灣股市技術分析之實證研究,國立台灣大學商學研究所,未出版碩士論文。
16.陳耀茂、殷淳淵, 2004,類神經網路 pcneuron,台北。
17.葉怡成,2004,類神經網路模式應用與實作(八版),儒林書局,台北。
18.楊孟龍,1999,類神經網路於股價波段預測及選股之應用,國立中央大學資訊管理研究所,碩士論文。
19.趙永昱,2001,技術分析交易法則在股市擇時之實證研究,國立中山大學財務管理學系研究所,碩士論文。
20.歐陽平,2001,以遺傳演化類神經網路對初次上市公司股票建構價格預測模式--以上市公司電子股為例,東吳大學經濟學系研究所,碩士論文。
21.劉克一,2000,以遺傳演算法演化類神經網路在股價預測上的應用,真理大學管理科學研究所,碩士論文。
22.劉映興,1994,台灣股票市場符合隨機漫步假說?以多重技術分析及統計檢定驗証,大葉大學事業經營研究所,碩士論文。
23.劉瑞鑫,2003,時間序列與人工智慧方法在台股指數報酬率預測之績效比較, 朝陽科技大學財務金融系研究所,碩士論文
24.賴勝章,1990,台灣股票市場弱式效率性之研究-以技術分析檢驗,國立台灣大學商學研究所,未出版碩士論文
25.鐘仁甫,2000,技術分析簡單法則於台灣電子個股之應用,國立東海大學企業管理學系碩士班,碩士論文。
26.Balachandher, K.G., Fauzias, M. N., and Lai, M. M., 2002, “An Examination of the Random Walk Model and Technical Trading Rules in the Malaysian Stock Market”, Quarterly Journal of Business & Economics, vol.41, 1 and 2, pp.81-104.
27.Balvers, R. J., Cosimano, T. F., and McDonald, B., 1990, “Predicting stock returns in an efficient market”, Journal of Finance, vol.55, pp.1109–1128.
28.Bessembiner, H., and Chan, C., 1995, “The profitability of technical trading rules in the Asian stock markets”, Pacific –Basin Finance Journal, vol.3, pp.257-284.
29.Breen, W., Glosten, L. R., and Jagannathan, R., 1990, “Predictable variations in stock index returns”, Journal of Finance, vol44, pp.1177–1189.
30.Campbell, J., 1987, “Stock returns and the term structure”, Journal of Financial Economics, vol18, pp.373–399.
31.Coutts, J. A., and Cheung, K. C., 2000, “Trading Rules and Stock Returns:Some Preliminary Short Run Evidence from The Hang Seng 1985-1997”, Applied Financial Economics, pp.579-586.
32.Enke, D., and Thawornwong, S., 2005, “The use of data mining and neural etworks for forecasting stock market returns”, Expert systems with Applications, vol.29, 927-940.
33.Fama, E. F., 1965, ” The Behavior of Stock Market Prices”, Journal of Business, vol. 38, pp.34-105.
34.Fama, E. F., 1970, ” Efficient Capital Markets : A Review of Theory and Empirical Work.”, Journal of Finance, vol.25, 2, pp.383-417.
35.Fama, E. F., 1976, Foundations of finance : portfolio decisions and securities, basic book, New York.
36.Fama, E. F., and Schwert, W. G., 1977, “Asset returns and inflation”, Journal of Financial Economics, vol.5, pp.115–146.
37.Fama, E. F., and French, K. R., 1988, “Dividend yields and expected stock returns”, Journal of Financial Economics, vol22, pp.3–25.
38.Fama, E. F., and French, K. R., 1989, “Business conditions and expected returns on stocks and bonds”, Journal of Financial Economics, vol.25, pp.23-49.
39.Ferson, W., 1989, “Changes in expected security returns, risk, and the level of interest rates”, Journal of Finance, vol.44, pp.1191–1217.
40.Gupta, J. N. D., and Sexton, R. S., 1999, “Comparing backpropagation with a genetic algorithm for neural network training”, Omega, vol.27,6 , pp.679–684.
41.Ignizio, J. P., and Soltys, R., 1996, “Simultaneous design and training of ontogenic neural network classifiers”, Computers and Operations Research, vol.23, 6, pp.535–546
42.Keim, D., and Stambaugh, R., 1986, “Predicting returns in the stock and bond markets”, Journal of Financial Economics, vol.17, pp.357–390.
43.Kim, K.J., and Han, I., 2000, “Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index”, Expert Systems with Applications, vol.19, 125-132.
44.Kuan, C. M., and White, H., 1994, ” Artificial neural networks: An econometric perspective”, Econometric Reviews, vol.13, pp.1-91.
45.Maillet, B. and Michel, T., 2000, “Further insights on the puzzle of technical analysis profitability”, The European Journal of Finance, vol.6, 196-224.
46.McCulloch, W.S., and Pitts, W., 1943, ” A Logical Calculus of Ideas Immanent in Nervous Activity”, Bull. Mathematical Biophysics, vol.5, pp.115-133.
47.Minsky, M., and Papert, S., 1969, Perceptrons, MIT press., Cambridge, Mass.
48.Rosenblatt. F., 1958, ” The Perceptron : A Probabilistic Model for Information Storage and Organization in the Brain”, Psychological Review, vol. 65 , pp.386-408.
49.Ratner, M., and Leal, R. P. C., 1999, “Test of technical trading strategies in the emerging equity markets of Latin America and Asia,” Journal of Banking and Finance, vol.23, pp.1887-1905.
50.Schwert, W. 1990, “Stock returns and real activity: a century of evidence”, Journal of Finance, vol.45, pp.1237–1257.
51.Sexton, R. S., Alidaee, B., Dorsey, R. E., and Johnson, J. D., 1998a, ”Global optimization for artificial neural networks: a tabu search application”, European Journal of Operational Research, vol.106, pp.570–584.
52.Sexton, R. S., Dorsey, R. E., and Johnson, J. D., 1998b, “Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation”, Decision Support Systems, vol.22, 2, pp.171–185.
53.Szakmary, A ., Davidson Ⅲ, W. N., and Schwarz, T. V., 1999, “Filter Tests in Nasdaq Stocks”, Financial Review, vol.34, pp.45-70.
54.Vellido, A., Lisboa, P. J. G., and Vaughan, J., 1999, “Neural Networks in Business a Survey of Applications ( 1992 ~ 1998 )”, Journal of Expert System with Application, vol. 17, pp.51 ~ 70.
55.Wiley, J., and Sons, 1999, An introduction to technical analysis(The Reuters financial training series), UK Reuters Limited, London.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔