(3.235.25.169) 您好!臺灣時間:2021/04/18 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴枝文
研究生(外文):Chin-wen Lai
論文名稱:穿透式雷射掃描角度偏向顯微鏡之研究
論文名稱(外文):Study on Transmission type Laser-scanning Angular Deviation Microscope
指導教授:邱銘宏
指導教授(外文):Ming-hung Chiu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:表面電漿共振共光程外差微小角度感測器
外文關鍵詞:angular sensorcommon-path heterodyne interferometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要提出利用共光程外差干涉術結合了高靈敏度表面電漿共振(Surface plasmon resonance; SPR)角度感測架構,來同時增加量測的範圍及縱向之解析度。當穿透光束入射待測物後,因折射率及表面高度變化使得光束產生收斂或發散的極微小角度變化,而當光束再經由SPR微小角度感測器部分時,會使得入射角偏離了共振角造成SPR感測器有明顯的相位變化,並由外差干涉術得到相位變化值。待測物件的折射率及表面形貌變化都和相位變化成正比關係,所以量測到個別的相位變化時,即可描繪出待測物件的表面形貌變化或折射率的分佈。縱向解析度方面更可高達nm等級,優點上具有非接觸性、非破壞性、樣品不需有導電性也不用作任何額外的處理、高解析能力(~1nm)、大量測範圍(±80μm) 、因共光程結構故有極高的穩定性。
A microscopy based on the common-path heterodyne interferometry and using an ultra-high sensitivity SPR (surface plasmon resonance) angular sensor is presented. It is used to measure a transparent medium profile by transferring the phase distributions to the refractive index profile or topography. An angle deviation of light due to the height or refractive index variation is detected using a SPR sensor and its corresponding phase shift is measured by the use of heterodyne technique. The axis resolution is better than 1nm while the numerical aperture of the objective lens is larger than the value of 0.6.
中文摘要 ………………………………………………………… I
英文摘要 ………………………………………………………… II
誌謝 …………………………………………………………
目錄 ………………………………………………………… III
表目錄 …………………………………………………………
圖目錄 …………………………………………………………
一、 緒論…………………………………………………… 1
1.1 前言…………………………………………………… 1
1.2 文獻回顧……………………………………………… 3
1.3 論文架構……………………………………………… 15
二、 共光程外差干涉儀…………………………………… 16
2.1 簡介…………………………………………………… 16
2.2 墊光晶體調制的外差光源…………………………… 17
2.3 共光程外差干涉儀原理……………………………… 20
2.4 共光程外差干涉儀幾基本架構……………………… 22
三、 表面電漿共振幾本原理……………………………… 24
3.1 簡介…………………………………………………… 24
3.2 色散關係式…………………………………………… 25
3.3 激發表面電漿的方式………………………………… 28
3.4 SPR系統的反射率及相位推導……………………… 30
3.5 SPR系統模擬與實驗………………………………… 35
3.5.1 表面電漿共振角度感測器強度量測法……………… 38
3.5.2 表面電漿共振角度感測器相位量測法……………… 39
3.5.3 結論…………………………………………………… 41
四、 系統架構之幾何光學………………………………… 44
4.1 簡介…………………………………………………… 44
4.2 待測物表面產生變化時角度偏向及相位產生的影 響……………………………………………………… 44
4.3 待測物表面變化與相位差的關係…………………… 48
4.4 待測物折射率變化時與角度偏向之關係…………… 51
4.5 結論…………………………………………………… 54
五、 角度偏向顯微術……………………………………… 55
5.1 前言…………………………………………………… 55
5.2 角度偏向顯微鏡結構………………………………… 56
5.2.1 光路架構……………………………………………… 56
5.2.2 外差光源……………………………………………… 58
5.2.3 信號處理……………………………………………… 59
5.3 系統分析……………………………………………… 60
5.3.1 待測物與相位差變化之關係………………………… 60
5.3.2 系統穩定度…………………………………………… 62
5.3.3 系統靈敏度…………………………………………… 63
5.3.4 系統解析度…………………………………………… 64
5.4 結果與討論…………………………………………… 65
5.4.1 穿透式物體表面形貌量測…………………………… 65
5.4.2 誤差分析……………………………………………… 70
5.5 結論…………………………………………………… 73
六、 結論………………………………………………… 75
參考文獻 ………………………………………………………… 76
附錄一 ………………………………………………………… 81
1.邱源成(譯),“奈米科技全書II-觀察分析法 ,”全華,2005。
2.Yuval Garini,Bart J Vermolen and Ian T Young, “From micro to nano:recent advances in high-resolution microscopy,” Current Opinion in Biotechnology
16,pp3-12,2005.
3.E. H. Synge, “A suggested method for extending the microscopic resolution into
the ultramicroscopic region,” Phil. Mag. 6, 356,1928.
4.E. A. Ash , G. Nicholls , “Super-resolution Aperture Scanning Microscope”,
Nature 237, 510 – 512, 30, June 1972.
5.Hirschfield T , “Total internal reflection spectroscopy, ”Canad. Spectrosc,
1965,10 (1):128-135.
6.T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T.Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules
inaqueous solution,” Nature 374, 555 (1995).
7.Dickson R M,Norris D J, Tzeng Y L,Moerner W E. “Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly ,” Science,274, 1996.
8.R.H. Ritce, “Plasma losses by fast electrons in tn films,” Phys.Rev., 106,
874-881 (1957).
9.C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev., 118, 640-643 1960.
10.K. Welford, “The method of attenuated total reflection,” IOP ShortMeeting
Series No.9, Institute of Physics, 25-78 ,1987.
11.B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for
gas detection and biosensing,” Sensors and Actuators, 4, 299-304 ,1983.
12.Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation,
polarizability, and shape,” Biophysical Journal, 80, 1557-1567 ,2001.
13.G. G. Nenninger, J. Homola, S.S. Yee, and P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and
Actuators B, 74, 145-151 ,2001.
14.K.C. Grabar, R.G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation andcharacterization of Au colloid monolayers,” Anal. Chem., 67, 735-743 ,1995.
15.P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature, 223, pp.
831, 1969.
16.W. B. Amos, J. G. White, and M. Fordham, “Use of Confocal imaging in the
study of biological structures,” Appl. Opt. 26, pp. 3239-3243, 1987.
17.G. Q. Xiai, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical
microscope,” Appl. Phy. Lett. 53, pp.716 1988.
18.C. W. Tsai, C. H. Lee, and J. Wang, “Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method,” Opt. Lett.
24, pp. 1732-1734, 1999.
19.C. J. R. Sheppard and D. M. Shotton , “Confocal laser scanning
microscopy,” Ch.5, 1997.
20.Haeberle, C. Xu. A. Dielterlen, and S. Jacquey, “Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance,”
Opt. Lett. 26, pp. 1684-1686, 2001.
21.C. H. Lee and J. Wang, “Optical measurement of the viscoelastic and biochemical responses of living cells to mechanical perturbation,” Opt.Lett. 23,
pp.307-309, 1998.
22.L. C. Peng, C. Chou, and C. W. Lyu, “Zeeman laser-scanning confocal
microscopy in turbid media,” Opt. Lett. 26, pp. 349-351, 2000.
23.C. P. Lin and R. H. Webb, “Fiber-coupled multiplexed confocal microscope,”
Opt. Lett. 25, pp. 954-956, 2000.
24.G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal
microscopy,” Opt. Lett. 23, pp. 1152-1154, 1998.
25.S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,”
Opt. Lett. 19, pp. 780-782, 1994.
26.S. Fine and W. P. Hansen, “Optical second harmonic generation in biologica
l systems,” Appl. Opt. 10, pp. 2350-2353, 1971.
27.I. Freund, M. Deutsch and A. Sprecher, “Connective tissue polarity:Optical second harmonic microscopy,crossed-beam summation and small-angle
scattering in rat-tail tendon,” Biophys.J., Vol.50, pp. 693-712, 1986.
28.G. Peleg, A. Lewis, O. bouevitch, L. Loew, D. Parnas and M. Linial, “Gigantic optical non-linearities from nanoparticle-ehnanced molecular probes with potential for selectively imaging the structure and physilology of nanometric
refions in cellular systems,” Bioimaging, Vol.14, pp. 215-224, 1996.
29.L. Moreaux,O. Sandre, M. Blanchard-Desce and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt.
Lett.,Vol.25, pp. 320, 2000.
30.Y. R. Shen, “The Principles of Nonlinear Optics ,” John Wiley & Sons,New York,
1984.
31.M. Hashimoto and T. Araki, “Coherent anti-Stokes Raman scattering
microscope ,” Proc. SPIE, Vo.3749l ,pp496-467 ,1999.
32.J. Y. Lee, D. C. Su, “Common-path heterodyne interferometric detection scheme
for measuring wavelength shift,” Opt. Commun., 162, 7-10, 1999.
33.K. H. Chen, C. C. Hsu, D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun., 209,
167-172, 2002.
34.J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas.
Sci. Technol., 14, 55-58, 2003.
35.M. H. Chiu, S. F. Wang, R. S. Chang, “D-type fiber biosensor based on the surface-plasmon resonance technology and heterodyne interferomery,” Optics
Letters volume 30, No.3, 233-235.
36.M. H. Chiu and D. C. Su, “Angle masurement by using the total-refection
heterodyne interferometry,” Opt. Eg. ,36 ,1750-1753, 1997.
37.M. H. Chiu, S. F. Wang, R. S. Chang, “Instrument for measuring small angles by using multiple total-internal reflections in heterodyne interferometry,” Applied
Optics 43, 5438-5442.
38.P. Hariharan, “Basics of interferometry,” Academic Press, INC, 67-77, 189,
1991.
39.F. G. Smith and T. A. King, “Optics and Photonics : An Introduction,John Wiley
& Sons,” Ltd, 209-211, 2000.
40.林俊佑,“以外差干涉術測量葡萄糖溶液之圓偏極折射率及濃度",國立交
通大學光電工程研究所碩士論文,2000。
41.邱銘宏,“共光程外差干涉儀的原理與其應用之研究",國立交通大學光電
工程研究所博士論文,1997。
42.H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,”
Springer-Verlag, Berlin, 1988.
43.S. Y. Wu and H. P. Ho, “Sensitivity improvement of the surface Plasmon resonance optical sensor by using a gold-silver transducing layer, ” IEEE Hong
Kong Electron Device Meeting, 22 June 2002.
44.Shuai Shen, Tong Liu, and Jihua Guo, “Optical phase-shift detection of surface
plasmon resonance,” Appl. Opt. 37, 1747-1751, 1998.
45.E. Kretchmann, ”Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen,” Z. Phys., Vol.
241,pp313-324, 1971.
46.Jir'' ı´ Homola, Sinclair S. Yee , Gu¨ nter Gauglitz , “Surface plasmon resonance
sensors: review,” Sensors and Actuators B 54, 3–15, 1999.
47.Wen Bin Lin, Jean Marc Chovelon, Nicole Jaffrezic-Renault, “Fiber-optic surface-plasmon resonance for the determination of thickness and optical
constants of thin matel films,” Appl. Opt. 39, 3261-3265, 2000.
48.Otto, “Excitation of nonradiative surface plasma waves in silver by
the method of frustrated total reflection,” Z. Phys., Vol. 216, pp398-410,1968.
49.E. Kretchmann, “Die best immung der optischen Konstanten dunner Schichten in der Nahe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission,” Z.
Phys. Vol. 221, pp346-356 ,1971.
50.Yi-Chang Cheng, Wen-Kuan Su, Jiann-Horng Liou, “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol
from ethyl alcohol,” Opt. Eng. 39(1), 311-314, 2000.
51.高翎誌, “多層膜Kr架構之表面電漿共振感測器靈敏度模擬與改善,”國立虎尾科技大學光電暨材料科技研究所碩士論文,2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔