(3.238.88.35) 您好!臺灣時間:2021/04/19 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:任佳珉
研究生(外文):Jia-Min Zen
論文名稱:新影像邊緣偵測法與基於影像邊緣特徵之浮水印技術
論文名稱(外文):A New Edge Detection Method and Watermarking Technique Based on Image Edge Features
指導教授:沈肇基沈肇基引用關係
指導教授(外文):Jau-Ji Shen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:76
中文關鍵詞:向量量化邊緣偵測數位浮水印關聯法則
外文關鍵詞:vector quantizationedge detectiondigital watermarkingassociation rules
相關次數:
  • 被引用被引用:0
  • 點閱點閱:653
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
邊緣是影像中常見的特徵之一,只要能夠取得邊緣完整資訊就可以製造出鮮明的影像輪廓圖;而浮水印則是一種應用在扮演保護影像著作權資訊的技術。本論文提出一基於向量量化索引表上的邊緣特徵以及資料探勘中關聯法則概念之強韌型浮水印技術。此外,本論文也提出植基於全新滑動視窗技術之二種不同的影像邊緣偵測方法。第一個方法是藉由定義在向量量化索引表上的4項目集之關聯法則,分別對原始影像及浮水印來探勘出邊緣特徵資訊。爾後,再將從浮水印所探勘出之關聯法則嵌入至原始影像的關聯法則後,也就達到保護影像智慧財產權之目的。
第二個方法是基於滑動視窗技術來偵測出影像像素值變化之邊緣偵測方法,其精神為利用影像邊緣明顯劇變之處來將像素值納入到大小不一的子視窗裡,並將此概念擴展至從影像的四個不同方向來找出邊緣特徵,便可產生四個具方向性之邊緣地圖。爾後,利用八個邊緣篩選器從中選取出可能的邊緣,並經由投票法,影像邊緣輪廓便油然而生。
第三個方法則是以相同的概念:浮動式大小之滑動視窗技術,來提出一影像邊緣偵測方法並改善上述所提及之偵測器。沿著不同的滑動方向,浮動視窗的大小會隨著像素值及其同樣滑動方向之周圍像素值來做調整。基於此概念並從影像八個不同的滑動視窗方向偵測出各方向的影像地圖。接下來,不同方向生之影像地圖中的某些邊緣特徵會被視為可能的影像邊緣,而較長的影像邊緣則會組成具方向性之影像邊緣概略輪廓。在將某些影像邊緣概略輪廓圖執行基本邏輯運算-或(OR)之後,便可以產生影像輪廓圖。
根據相關實結果證實,本論文所提出的第一個技術可有效抵抗一般幾何攻擊且任何比原圖還大且複雜的浮水印,本方法也可將之藏匿在原圖中。此外,本論文所提出之二種影像邊緣偵測技術,也可以減少雙邊緣及斑點的情況發生。
Edge is one of common features in images. By taking the complete information of edges in an image is to generate the sharp profile of the object. Watermarking is a technique that plays a role as the protector for the image’s copyright information. In this thesis, we propose a robust watermarking technique based on edge features in vector quantization (VQ) index table and the concept of association rules in data mining. Besides, we also present two edge detection approaches using a novel sliding window technique. The first scheme is to define 4-itemset association rules in VQ index table to explore some edge characteristics such that association rules of a watermark and an original image can be obtained, respectively. Subsequently, by embedding association rules of a watermark into association rules of an original image, the purpose for protecting intellectual property rights is achieved.
The second scheme is to apply sliding window technique to explore the variations of image pixels for edge detection. All pixels in an image will be included into different sub-windows with different size according to the heterogeneities of edges. After performing this concept on image pixels to explore edge features from four variant directions, four different directional edge maps are generated. Afterwards, eight edge selectors are utilized to sieve out possible edges, and the final edge image is determined by voting.
The third scheme also applies the same concept, sliding window technique with dynamic size, to propose an edge detection approach and improve the second scheme. Along different sliding direction, the window size will be modified according to the variation of a pixel and its neighboring pixels in the same sliding direction. This concept is utilized to generate eight directional edge maps from eight different sliding directions. Subsequently, directional edge candidates can be obtained by regarding some pixels in those edge maps as edges, and from each directional edge candidate, some connective edge candidates will be considered to be edges so as to generate a directional edge rough. The final edge image is created by performing the basic logical operation, OR, to some directional edge roughs.
Relevant experimental results demonstrate that our proposed robust watermarking technique can survive geometric operation attacks, and any a complex watermark with size larger than an original image also can be implemented. Besides, the other two schemes applied to detect edges also can achieve better results with less double edges and speckles occurring.
Abstract (in Chinese).......................................................................................................i
Abstract (in English) ......................................................................................................ii
Acknowledgement .........................................................................................................iii
Table of Contents............................................................................................................iv
List of Tables ...................................................................................................................vi
List of Figures ................................................................................................................vii
Symbol Explanations.....................................................................................................xi
Chapter 1 Introduction............................................................................................1
1.1 Background and Motivation ............................................................................1
1.2 Thesis Organization .........................................................................................3
Chapter 2 A Robust Watermarking Technique Based on Vector
Quantization and Association Rules..............................................5
2.1 Related Works ..................................................................................................5
2.1.1 Association Rules.................................................................................5
2.1.2 Vector Quantization (VQ) ....................................................................6
2.1.3 The Characteristics in VQ Index Table................................................7
2.1.4 Edge Block Detection Method.............................................................7
2.1.5 Wu and Chang’s Watermarking Method..............................................9
2.2 The Proposed Method ......................................................................................9
2.2.1 Association Rules of Original Image and Watermark........................10
2.2.2 Embedding Process............................................................................ 11
2.2.3 Extracting Process..............................................................................13
2.3 Experimental Results .....................................................................................14
2.4 Discussion and Summary...............................................................................26
Chapter 3 Using Sliding Window Technique to Explore the
Variations of Image Pixels for Edge Detection ........................28
3.1 Related Works ................................................................................................28
3.1.1 Sobel Edge Detector ..........................................................................28
3.1.2 Kang and Wang’s Edge Detection Method ........................................29
3.2 The Proposed Edge Detector .........................................................................31
3.2.1 Directional Edge Maps Generation....................................................31
3.2.2 Sketch of an Image.............................................................................33
3.2.3 Edge Selectors and Vote.....................................................................34
3.3 Experimental Results .....................................................................................35
3.4 Discussion and Summary...............................................................................38
Chapter 4 A Novel Edge Detection Method Based on
Directional Edge Maps.....................................................................40
4.1 Related Works ................................................................................................40
4.1.1 Sobel Edge Detector ..........................................................................40
4.1.2 Canny Edge Detector .........................................................................41
4.1.3 Kang and Wang’s Edge Detection Method ........................................42
4.2 Proposed Edge Detection Methodology ........................................................43
4.2.1 Generating Directional Edge Maps....................................................44
4.2.2 Creating Directional Edge Candidates...............................................45
4.2.3 Producing Directional Edge Roughs..................................................46
4.2.4 Final Edge Image Generation ............................................................46
4.3 Experiments and Results................................................................................46
4.4 Discussion and Summary...............................................................................54
Chapter 5 Conclusions...........................................................................................57
References..................................................................................................................59
[1]C. Kurak and J. McHugh, "A cautionary note on image downgrading," presented at Computer Security Applications Conference, 1992.
[2]H. Min-Shiang, C. Chin-Chen, and H. Kuo-Feng, "A watermarking technique based on one-way hash functions," Consumer Electronics, IEEE Transactions on, vol. 45, pp. 286-294, 1999.
[3]L. Chun-Shien and H. Y. M. Liao, "Multipurpose watermarking for image authentication and protection," Image Processing, IEEE Transactions on, vol. 10, pp. 1579-1592, 2001.
[4]Y. Wang, J. F. Doherty, and R. E. Van Dyck, "A wavelet-based watermarking algorithm for ownership verification of digital images," Image Processing, IEEE Transactions on, vol. 11, pp. 77-88, 2002.
[5]V. Solachidis and L. Pitas, "Circularly symmetric watermark embedding in 2-D DFT domain," Image Processing, IEEE Transactions on, vol. 10, pp. 1741-1753, 2001.
[6]K. Xiangui, H. Jiwu, Q. S. Yun, and L. Yan, "A DWT-DFT composite watermarking scheme robust to both affine transform and JPEG compression," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, pp. 776-786, 2003.
[7]M. Eyadat, "Factors that affect the performance of the DCT-block based image watermarking algorithms," 2004.
[8]R. Safabakhsh, S. Zaboli, and A. Tabibiazar, "Digital watermarking on still images using wavelet transform," 2004.
[9]W.-Y. Chen and C.-H. Chen, "A robust watermarking scheme using phase shift keying with the combination of amplitude boost and low amplitude block selection," Pattern Recognition, vol. 38, pp. 587-598, 2005.
[10]N. Nikolaidis and I. Pitas, "Robust image watermarking in the spatial domain," Signal Processing, vol. 66, pp. 385-403, 1998.
[11]J.-C. Liu and S.-Y. Chen, "Fast two-layer image watermarking without referring to the original image and watermark," Image and Vision Computing, vol. 19, pp. 1083-1097, 2001.
[12]H.-C. Huang, F.-H. Wang, and J.-S. Pan, "A VQ-based robust multiwatermarking algorithm," IEICE Transactions on Fundamentals of Electronics, vol. E85-A, pp. 1719-1726, 2002 July.
[13]J. Minho and K. HyoungDo, "A digital image watermarking scheme based on vector quantization," IEICE Transactions on Information and Systems, vol. E85-D, pp. 1054-1056, 2002 June.
[14]L. Zhe-Ming, X. Dian-Guo, and S. Sheng-He, "Multipurpose image watermarking algorithm based on multistage vector quantization," Image Processing, IEEE Transactions on, vol. 14, pp. 822-831, 2005.
[15]N. Efford, Digital Image Processing: Addison-Wesley, Reading, MA, 2000.
[16]J. Canny, "A computational approach to edge detection," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 8, pp. 679-698, 1986.
[17]C.-C. Kang and W.-J. Wang, "A novel edge detection method based on the maximizing objective function," Pattern Recognition, vol. 40, pp. 609-618, 2007.
[18]F. Russo and G. Ramponi, "Fuzzy operator for sharpening of noisy images," Electronics Letters, vol. 28, pp. 1715-1717, 1992.
[19]T. Law, H. Itoh, and H. Seki, "Image filtering, edge detection, and edge tracing using fuzzy reasoning," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 18, pp. 481-491, 1996.
[20]C. G. Looney, "Nonlinear Rule-based Convolution for Refocusing," Real-Time Imaging, vol. 6, pp. 29-37, 2000.
[21]L. R. Liang and C. G. Looney, "Competitive fuzzy edge detection," Applied Soft Computing, vol. 3, pp. 123-137, 2003.
[22]V. Srinivasan, P. Bhatia, and S. H. Ong, "Edge detection using a neural network," Pattern Recognition, vol. 27, pp. 1653-1662, 1994.
[23]H.-S. Wong, T. Caelli, and L. Guan, "A model-based neural network for edge characterization," Pattern Recognition, vol. 33, pp. 427-444, 2000.
[24]K. Suzuki, I. Horiba, and N. Sugie, "Neural Edge Detector - A Good Mimic of Conventional One Yet Robuster against Noise," in Lecture Notes In Computer Science, vol. 2085, 2001.
[25]C. G. Looney, "Radial basis functional link nets and fuzzy reasoning," Neurocomputing, vol. 48, pp. 489-509, 2002.
[26]R. R. Rakesh, P. Chaudhuri, and C. A. Murthy, "Thresholding in edge detection: a statistical approach," Image Processing, IEEE Transactions on, vol. 13, pp. 927-936, 2004.
[27]H.-C. Wu and C.-C. Chang, "A novel digital image watermarking scheme based on the vector quantization technique," Computers & Security, vol. 24, pp. 460-471, 2005.
[28]A. Savasere, E. Omiecinski, and S. Navathe, "An Efficient Algorithm for Mining Association Rules in Large Databases," presented at Proceedings of the 21th International Conference on Very Large Databases (VLDB), Zurich, Switzerland, 1995.
[29]M. J. Zaki, "Scalable algorithms for association mining," Knowledge and Data Engineering, IEEE Transactions on, vol. 12, pp. 372-390, 2000.
[30]L. Feng, T. Dillon, and J. Liu, "Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meteorological data," Data & Knowledge Engineering, vol. 37, pp. 85-115, 2001.
[31]G. Chen, Q. Wei, D. Liu, and G. Wets, "Simple association rules (SAR) and the SAR-based rule discovery," Computers & Industrial Engineering, vol. 43, pp. 721-733, 2002.
[32]Y. Linde, A. Buzo, and R. Gray, "An Algorithm for Vector Quantizer Design," Communications, IEEE Transactions on, vol. 28, pp. 84-95, 1980.
[33]H. Hsiang-Cheh, W. Feng-Hsing, and P. Jeng-Shyang, "Efficient and robust watermarking algorithm with vector quantisation," Electronics Letters, vol. 37, pp. 826-828, 2001.
[34]C.-C. Chang, F.-C. Shine, and T.-S. Chen, "Pattern-based Side Match Vector Quantization for Image Compression," Imaging Science Journal, vol. 48, pp. 63-76, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔