[1] Inmon, W. H., "The data warehouse and data mining", Communications of the ACM,39(11), pp. 49-50, 1996.
[2] Mitra, S., Pal, S. K., and Mitra, P., "Data mining in soft computing framework: a survey",
IEEE Transactions on Neural Networks, 13(1), pp. 3-14, 2002.
[3] Backus, P., Janakiram, M., Mowzoon, S., Runger, C., and Bhargava, A., "Factory cycle-
time prediction with a data-mining approach", Semiconductor Manufacturing,
IEEE Transactions on, 19(2), pp. 252-258, 2006.
[4] Kusiak, A. and Shah, S., "Data-mining-based system for prediction of water chemistry
faults", Industrial Electronics, IEEE Transactions on, 53(2), pp. 593-603, 2006.
[5] Gao, H. T., Hayes, J. H., and Cai, H., "Integrating biological research through Web
services", Computer, 38(3), pp. 26-31, 2005.
[6] Shu-Ching, Kuo, Sheng-Tun, Li, Yi-Chung, Cheng, and Men-Hsieu, Ho, "Knowledge
discovery with SOM networks in financial investment strategy", Proceedings of the
Fourth International Conference on Hybrid Intelligent Systems, pp. 98-103, 5-8 Dec.
2004.
[7] Kirkos, Efstathios, Spathis, Charalambos, and Manolopoulos, Yannis, "Data Mining
techniques for the detection of fraudulent financial statements", Expert Systems with
Applications, 32(4), pp. 995-1003, 2007.
[8] Lamma, E., Mello, P., Nanetti, A., Riguzzi, F., Storari, S., and Valastro, G., "Artificial
intelligence techniques for monitoring dangerous infections", Information Technology
in Biomedicine, IEEE Transactions on, 10(1), pp. 143-155, 2006.
[9] Haiying, Wang, Azuaje, F., and Black, N., "An integrative and interactive framework
for improving biomedical pattern discovery and visualization", Information Technology
in Biomedicine, IEEE Transactions on, 8(1), pp. 16-27, 2004.
[10] Voth, D., "Using AI to detect breast cancer", Intelligent Systems, IEEE [see also IEEE
Intelligent Systems and Their Applications], 20(1), pp. 5-7, 2005.
[11] Douglas, S., Agarwal, D., Alonso, T., Bell, R. M., Gilbert, M., Swayne, D. F., and
Volinsky, C., "Mining Customer Care Dialogs for "Daily News"", Speech and Audio
Processing, IEEE Transactions on, 13(5), pp. 652-660, 2005.
[12] Etzioni, O., "The World Wide Web: Quagmire or Goldmine?" Communications of the ACM, 39, pp. 65-68, 1996.
[13] Tanasa, D. and Trousse, B., "Data preprocessing for WUM", Potentials, IEEE, 23(3),
pp. 22-25, 2004.
[14] Hung, Shin-Yuan, Yen, David C., and Wang, Hsiu-Yu, "Applying data mining to telecom
churn management", Expert Systems with Applications, 31(3), pp. 515-524,2006.
[15] Daskalaki, S., Kopanas, I., Goudara, M., and Avouris, N., "Data mining for decision
support on customer insolvency in telecommunications business", European Journal of
Operational Research, 145(2), pp. 239-255, 2003.
[16] Fayyad, U., Haussler, D., and Stolorz,P., "Mining scientific data", Communications of
the ACM, 39, pp. 51-57, 1996.
[17] Wang, J. T. L., Zaki, M. J., Toivonen, H. T. T., and Shasha, D. E., Data Mining in Bioinformatics,Advance Information and Knowledge Processing Series. London,Springer-Verlag, 2005.
[18] Fayyad, U. and Uthurusamy, R., "Data mining and knowledge discovery in databases",Communications of the ACM, 39(11), pp. 24-26, 1996.
[19] Bentz, Y. and Merunka, D., "Neural networks and the multinomial logit for brand choice modeling: A hybrid approach", Journal of Forecasting, 19(3), pp. 177-200,2000.
[20] Ha, K., Cho, S., and MacLachlan, D., "Response models based on bagging neural
networks", Journal of Interactive Marketing, 19(1), pp. 17-30, 2005.
[21] Kim, Y. S. and Street, W. N., "An intelligent system for customer targeting: a data
mining approach", Decision Support Systems, 37(2), pp. 215-228, 2004.
[22] Haughton, D. and Oulabi, S., "Direct marketing modeling with CART and CHAID",
Journal of Direct Marketing, 11(4), pp. 42-52, 1997.
[23] Cheung, K. -W., Kwok, J. T., Law, M. H., and Tsui, K. -C., "Mining customer product
ratings for personalized marketing", Decision Support Systems, 35(2), pp. 231-243,
2003.
[24] Parpinelli, R. S., Lopes, H. S., and Freitas, A.A., "An ant colony based system for data
mining: applications to medical data", Proceedings of the 2001 Genetic and Evolutionary
Computation Conference, pp. 791-798, San Francisco, USA, July 2001.
[25] Chen, T. -C. and Hsu, T. -C., "A GAs based approach for mining breast cancer pattern",
Expert Systems with Applications, 30(4), pp. 674-681, 2006.
[26] Chen, T. -C. and Chen, C. -Y., "IAs Based Rule Mining Approach for Satellite-Derived
Land-Cover Classification", WSEAS Transactions on Computers, 5(6), pp. 1345-1353,
2006.
[27] Huang, C. L. and Wang, C. J., "A Ga-based feature selection and parameters optimization
for support vector machines", Expert Systems with Applications, 31, pp. 231-240,2006.
[28] Peng, S., Xu, Q., Ling, X. B., Peng, X., Du, W., and Chen, L., "Molecular classification
of cancer types from microarray data using the combination of genetic algorithms
and support vector machines", Federation of European Biochemical Societies, 555, pp.
358-362, 2003.
[29] Kim, Y. S., Street, W. N., and Menczer, F., "Optimal ensemble construction via
meta-evolutionary ensembles", Expert Systems with Applications, 30(4), pp. 705-714,
2006.
[30] Tsai, Y. -C., Cheng, C. -H., and Chang, J. -R., "Entropy-based fuzzy rough classification
approach for extracting classification rules", Expert Systems with Applications,
31(2), pp. 436-443, 2006.
[31] Fayyad, Usama M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances
in Knowledge Discovery and Data Mining. Menlo Park, CA, AAAI/MIT Press, 1996.
[32] Frawley, William J., and, Gregory Piatetsky-Shapiro, and Matheus, Christopher J.,
"Knowledge Discovery in Databases: An Overview", AI Magazine, 13, pp. 57-70,
1992.
[33] Groupe, F. H. and Owrang, M. M., "Data base mining discovery new knowledge and
cooperative advatage", Information System Management, 16, pp. 26-31, 1995.
[34] Berry, Michael J. A. and Linoff, G., Data Mining Techniques for Marketing,
Sales and Customer Support. New York, John Wiley & Sons, Inc., 1997.
[35] Cabena, P., Hadjinaian, P., Stadler, R., Verhees, J., and Zanasi, A., Discovering Data
Mining: From Concept to Implementation. New Jersey, Prentice Hall, 1997.
[36] Kleissner, C., "Data mining for the enterprise", Proceedings of the Thirty-First Hawaii
International Conference on System Sciences, pp. 295-304, Kohala Coast, HI, USA,
6-9 Jan 1998.
[37] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A., Classification and Regression
Trees Monterey, CA, USA, Wadsworth International Group, 1984.
[38] Fayyad, Usama M., Piatetsky-Shapiro, G., and Smyth, P., From Data Mining to
Knowledge Discovery: An Overview, 1996.
[39] Dash, M. and Liu, H., "Feature selection for classification", Intelligent Data Analysis,
1(1), pp. 131-156, 1997.
[40] Jain, A. K., Duin, R. P. W., and Mao, J., "Statistical Pattern Recognition: A Review",
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, pp. 4-37, 2000.
[41] Yu, E. and Cho, S., "Ensemble based on GA wrapper feature selection", Computers &
Industrial Engineering, 51(1), pp. 111-116, 2006.
[42] Yang, J. and Honavar, V., "Feature subset selection using a genetic algorithm", IEEE
Intelligent Systems, 13(1), pp. 44-49, 1998.
[43] Yu, E. and Cho, S., "Constructing response model using ensemble based on feature
subset selection", Expert Systems with Applications, 30(2), pp. 352-360, 2006.
[44] Blum, A. and Langley, P., "Selection of Relevant Features and Examples in Machine
Learning", Artificial Intelligence, 97, pp. 245-271, 1997.
[45] Liu, H. and Motoda, H., Feature selection for knowledge discovery and data mining.
Norwell, MA, Kluwer Academic, 1998.
[46] Roitt, I., Brostoff, J., and Male, D., Immunilogy,5/e, Original English edition Copyright
Mosby International Ltd., 1998.
[47] Weissman, I. L. and Cooper, M. D., "How the immune system develops", Scientific
American, 269(3), pp. 33- 40, 1993.
[48] Institute, National Cancer, Understanding the Immune System, National Cancer Institute,
2003.
[49] Jerne, N. K., "The immune system", Scientific America, 229(1), pp. 52-60, 1973.
[50] De Castro, L. N. and Von Zuben, F. J., "ARTIFICIAL IMMUNE SYSTEMS:PART
II – A SURVEY OF APPLICATIONS", 2000.
[51] Michalewicz, Z., Genetic algorithm + Data structures = Evolution programs, Third,
Revised and Extend ed, Berlin: Springer, 1994.
[52] Kennedy, J. and Eberhart, R. C., "Particle swarm optimization", Proceedings of the
IEEE International Conference on Neural Networks, pp. 1942-1948, Perth, WA,
11/27/1995 - 12/01/1995.
[53] Elbeltagi, E., Hegazy, T., and Grierson, D., "Comparison among five evolutionary-
based optimization algorithms", Advanced Engineering Informatics, 19(1), pp.
43-53, 2005.
[54] Eberhart, R. and Kennedy, J., "A new optimizer using particle swarm theory", Proceedings
of the the Sixth International Symposium on Micromachine and Human Science,
pp. 39-43, Nagoya, Japan, 10/04/1995 - 10/06/1995.
[55] Shi, Y. and Eberhart, R., " A modified particle swarm optimizer", Proceedings of the
the IEEE International Conference on Evolutionary Computation, pp. 69-73, Anchorage,
Alaska, May 1998.
[56] Chen, M. C., Tsai, D. M., and Tseng, H. Y., "A stochastic optimization approach for
roundness measurements", Pattern Recognition Letters, 20, pp. 707-719, 1999.
[57] Kennedy, J. and Eberhart, R. C., "A discrete binary version of the particle swarm algorithm",
Proceedings of the International Conference on Evolutionary Computation, pp.
4104-4108, Orlando, FL, USA, Oct. 1997.
[58] Freitas, A. A., A survey of evolutionary algorithms for data mining and knowledge
discovery., Springer-Verlag, 2002.
[59] Lopes, H. S., Coutinho, M. S., and Lima, W. C., An evolutionary approach to simulate
cognitive feedback learning in medical domain, World Scientific, 1998.
[60] Alberg, Anthony J, Park, Ji Wan, Hager, Brant W, and Diener-West, Marie, "The use
of "overall accuracy" to evaluate the validity of screening or diagnostic tests." Journal
of General Internal Medicine, 19(5 Pt 1), pp. 460-465, 2004.
[61] Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J., UCI Repository of machine
learning databases, Available from
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
[62] Fisher, R. A., "The use of multiple measurements in taxonomic problems", Annals of
Eugenics, 7, pp. 179-188, 1936.
[63] Marshall, M., Iris Plants Database, Available from
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/iris.data, 1988.
[64] Chen, S. -M. and Yu, C. -H., "A new method to generate fuzzy rules from training instances
for handling classification problems", Cybernetics and Systems, 34(3), pp.
217-232, 2003.
[65] Wu, T. -P. and Chen, S. -M., "A new method for constructing membership functions
and fuzzy rules from training examples", Systems, Man and Cybernetics, Part B, IEEE
Transactions on, 29(1), pp. 25-40, 1999.
[66] Heylighen, F., Occam''s razor principle, Available from
http://pespmc1.vub.ac.be/OCCAMRAZ.html, 1997.
[67] Hong, T. -P. and Lee, C. -Y., "Induction of fuzzy rules and membership functions from
training examples", Fuzzy Sets and Systems, 84(1), pp. 33-47, 1996.
[68] Forsyth, R. S., BUPA liver disorders, Available from
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liver-disorders/bupa.data, 1990.
[69] Delen, D., Walker, G., and Kadam, A., "Predicting breast cancer survivability: a comparison
of three data mining methods", Artificial Intelligence in Medicine, 34(2), pp.
113-127, 2005.
[70] Johnson, R. A. and Wichern, D. W., Applied multivariate statistical analysis (5th ed.).
NJ, Prentice-Hall, 2002.
[71] West, David, "Neural network credit scoring models", Computers & Operations Research,
27(11-12), pp. 1131-1152, 2000.
[72] 周至文, "資訊揭露與股權結構關係之研究", 崑山科技大學, 碩士論文. 民國94年.
[73] Freund, Y. and Schapire, R. E. , "Experiments with a New Boosting Algorithm ", Proceedings
of the thirteenth International Conference on Machine Learning, pp. 148-156,
San Francisco,CA, 1996.
[74] Roiger, Richard J. and Geatz, Michael W., Data Mining: a tutorial-based primer, Person
Education, Inc., 2003.