跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/09 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳信賢
研究生(外文):Hsin-Hsien Wu
論文名稱:結球白菜’亞蔬1號’於高溫淹水逆境下之葉片蛋白質體分析
論文名稱(外文):Proteomic analysis of leaf in Chinese Cabbage ‘ASVEG1’ under heat and flooding stress
指導教授:羅筱鳳
指導教授(外文):Hsiao-Feng Lo, Ph.D.
學位類別:碩士
校院名稱:中國文化大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:127
中文關鍵詞:全自動二維蛋白質快速層析分離系統氣孔導度葉綠素螢光
外文關鍵詞:ProteomeLabTM PF 2DStomatal ConductanceChlorophyll Fluorescence.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:2
本研究以結球白菜’亞蔬1號’(‘ASVEG 1’)、’瑞農720’(‘RN720’)為試驗材料,在45天苗期給予0、6、24、48及72小時20 ℃未淹水、20 ℃淹水、40 ℃未淹水以及40 ℃淹水處理,測定葉片氣孔導度及葉綠素螢光,並萃取葉片蛋白質,以全自動二維蛋白質快速層析分離系統ProteomeLabTM PF 2D分析四種處理24與48小時之蛋白質體。結球白菜在淹水情況下,氣孔導度明顯下降;在淹水逆境下葉綠素螢光Fv/Fm值下降幅度不大,但在高溫逆境下Fv/Fm值降低,表示PSII效率下降,顯示結球白菜’亞蔬1號’及’瑞農720’對高溫逆境比對淹水逆境更加敏感。氣孔導度可作為結球白菜淹水逆境之生理指標,而葉綠素螢光可作為高溫逆境之生理指標。結球白菜’亞蔬1號’在高溫淹水24小時的情況下,發現UDP-glucose 6-dehydrogenase、PIK-kinase、OEE1與ribulose 1,5-bisphosphate carboxylase-oxygenase相似之蛋白質皆明顯的增加;3-hydroxy-3-methylglutaryl-1 CoA reductase、EIIAB、Nitrate reductase、 N-carbamoyl-L-amino acid amidohydrolase與CoB—CoM heterodisulfide reductase 1 subunit B,相似的蛋白質在處理後減少。20 ℃淹水48小時,ribonucleotide-diphosphate reductase alpha subunit、S-adenosylmethionine synthetase與RNA-dependent RNA polymerase相似的蛋白質表現增加;40 ℃未淹水48小時,rubisco ssu precursor與Ribulose bisphosphate carboxylase small chain相似的蛋白質表現增加;40 ℃淹水48小時,rubisco ssu precursor、Transcription elongation factor、Ribulose bisphosphate carboxylase small chain及Maf-like protein相似的蛋白質表現增加。結球白菜’瑞農720’在20℃淹水24小時下,Truncated hemoglobin-like protein與Ribulose bisphosphate carboxylase small chain的相似蛋白質增加;2-amino-3-ketobutyrate coenzyme A ligase與phosphoserine aminotransferase相似的蛋白質在處理後減少;在40℃未淹水24小時,Ribulose bisphosphate carboxylase small chain、NADH dehydrogease subunit 1、Ribulose bisphosphate carboxylase large chain precursor、F-box/Kelch-repeat protein及16 kDa calcium-binding protein相似的蛋白質表現增加;2-hydroxy-3-oxopropionate reductase、Tryptophan synthase alpha chain及Beta-microseminoprotein precursor相似的蛋白質在處理後減少。
The 45-days seedlings of Chinese cabbage ‘ASVEG 1’and ‘RN720’ were treated with 20℃/flooding, 20℃/ non-flooding, 40℃/flooding and 40℃/non-flooding for 0, 6, 24, 48 and 72 hours. Leaf stomatal conductance and chlorophyll fluorescence were determined. Leaf protein extracts were separated by ProteomeLabTM PF 2D. In the flooding treatments, stomatal conductance dropped. Fv/Fm also decreased in the 40℃ treatments. Chinese cabbage ‘ASVEG 1’and ‘RN720’ is more sensitive to heat stress than flooding stress. Stomatal conductance and chlorophyll fluorescence can be used as the physiological indicator of heat and flooding stress, separately. Chinese cabbage ‘ASVEG 1’ at 40 ℃/flooding for 24 hours, obvious increase occurred in proteins identical to UDP-glucose 6-dehydrogenase, PIK-kinase, OEE1 and ribulose 1,5-bisphosphate carboxylase-oxygenase, while decreased in proteins identical to 3-hydroxy-3- methylglutaryl-1 CoA reductase, EIIAB, nitrate reductase, N-carbamoyl- L-amino acid amidohydrolase and CoB-CoM heterodisulfide reductase 1 subunit B. Twenty ℃/flooding for 48 hours, obvious increase occurred in proteins identical to ribonucleotide- diphosphate reductase alpha subunit, S-adenosylmethionine synthetase and RNA- dependent RNA polymerase. Twenty ℃/non-flooding for 48 hr, obvious increases were the proteins identical to rubisco ssu precursor and Ribulose bisphosphate carboxylase small chain. Forty℃/non-flooding for 48 hours obvious increases were the proteins identical to rubisco ssu precursor, transcription elongation factor, ribulose bisphosphate carboxylase small chain and Maf-like protein. Chinese cabbage ‘RN720’ at 20 ℃/flooding for 24 hours, obvious increase occurred in proteins identical to Truncated hemoglobin-like protein and Ribulose bisphosphate carboxylase small chain, while decreased in proteins identical to 2-amino-3-ketobutyrate coenzyme A ligase and phosphoserine aminotransferase. Forty℃/non-flooding for 24 hours obvious increases were the proteins identical to Ribulose bisphosphate carboxylase small chain、NADH dehydrogease subunit 1、Ribulose bisphosphate carboxylase large chain precursor、F-box/Kelch-repeat protein and 16 kDa calcium-binding protein, while decreased in proteins identical to 2-hydroxy-3-oxopropionate reductase、Tryptophan synthase alpha chain and Beta-microseminoprotein precursor.
目錄
目錄…………………………………………………………………………IV
表目錄………………………………………………………………….….VIII
圖目錄………………………………………………………………………IX
縮寫與全名對照表…………………………………………………...…...XVI
中文摘要………………………………………………………………...……1
英文摘要……………………………………………………………...………3
壹、 前言……………………………………………………………………5
貳、 前人研究
一、 結球白菜………………………………………………….……7
二、 植物高溫淹水逆境……………………………………….…...10
三、 葉片氣孔導度…………………………………………….…...12
四、 葉片葉綠素螢光………………………………………….…...13
五、 蛋白質二維分離………………………………………………15
參、 材料與方法
一、 材料來源………………………………………………………18
二、 試驗材料………………………………………………………18
三、 植株栽培………………………………………………………18
四、 儀器設備………………………………………………………18
五、 逆境處理………………………………………………………19
六、 氣孔導度(stomatal conductance)之測定……………………...19
七、 葉片葉綠素螢光之測定………………………………………20
八、 統計分析………………………………………………………20
九、 蛋白質二維分析………………………………………………21
十、 蛋白質定量……………………………………………………21
十一、 ProteomeLabTM PF 2D原理……………………………...22
十二、 Trypsin digest……………………………………………..23
十三、 ZipTip……………………………………………………..24
十四、 Marixscience.com數據處理流程………………………...26
十五、 Peptide定序鑑定…………………………………………26
肆、 結果
一、 植株外觀………………………………………………………27
二、 葉綠素螢光Fv/Fm值…………………………………………27
三、 氣孔導度………………………………………………………27
四、 PF 2D 第一維結果……………………………………………28
五、 PF 2D 第二維結果……………………………………………29
六、 MS/MS方式辨識蛋白質……………………………………...31
七、 PMF方式辨識蛋白質…………………………………………32
伍、討論
一、 植株處理後外觀………………………………………………35
二、 葉綠素螢光Fv/Fm值…………………………………………35
三、 氣孔導度………………………………………………………36
四、 PF 2D 第一維結果……………………………………………37
五、 PF 2D 第二維結果……………………………………………38
六、 結球白菜’亞蔬1號’在本研究中逆境表現量增加的蛋白質
(1).Oxygen-evoliving enhancer protein 1-2(OEE1)…………...39
(2).Ribulose 1,5-bisphosphate carboxylase-oxygenase large subunit……………………………………………………..40
(3).UDP-glucose 6-dehydrogenase……………………………41
(4).Phosphatidylinositol 4-kinase(PIK1)………………………41
(5). RuBisCo ssu precursor(pSSU)…………………………....42
(6). S-adenosylmethionine synthetase(SAMS)…………..……42
七、 結球白菜’亞蔬1號’在本研究中表現量減少的蛋白質
(1).3-hydroxy-3-methylglutary 1-coenzyme A reductase(HMGR)
……………………………………………………………..43
(2).PTS system mannose-specific EIIAB component…………44
(3).Nitrate reductase(NR)……………………………………...44
(4).N-caramoyl-L-amino acid amidohydrolase………………..45
(5).CoB—CoM heterodisulfide reductase 1 subunit B……..…46
八、 結球白菜’ 瑞農’在本研究中表現量增加的蛋白質
(1). NADH dehydrogease subunit 1.…………………………..46
(2). Truncated hemoglobin-like protein…………….…………47
(3). F-box/Kelch-repeat protein..……………………………...48
(4). calcium-binding protein…………………………………..48
九、 結球白菜’ 瑞農’在本研究中表現量減少的蛋白質
(1). 2-amino-3-ketobutyrate coenzyme A ligase.……………..49
(2). Tryptophan synthase alpha chain………...…….…………49
(3). Beta-microseminoprotein precursor……………………....50
十、 未知功能之蛋白質……………………………………………50
陸、結論…………………………………………………………………….51
柒、參考文獻……………………………………………………………….115

表目錄
表1.不同高溫條件下熱害症狀發生變化情形…………………………..…53
表2.根據積分面積所添加Trypsin digest各藥品的量……………………...53
表3.結球白菜高溫淹水後以MS/MS (tandem mass spectrometry)方式,進行葉片蛋白質的辨識………………………………………………….54
表4.結球白菜高溫淹水後以PMF (peptide mass spectrometry)方式,進行葉片蛋白質的辨識…………………………………………………….55
表5.結球白菜高溫淹水後葉片所辨識蛋白質之等電點、分子量與表現程度……………………………………………………………………….57

圖目錄
圖1. ProteomeLabTM PF 2D儀器外觀…………………………………..….59
圖2. ProteomeLabTM PF 2D蛋白質分離流程圖………………………..….59
圖3.結球白菜 ‘亞蔬1號’之母本E-7…………………….………….…....60
圖4.結球白菜 ‘亞蔬1號’之父本B-18..………………………………..…60
圖5.結球白菜’亞蔬1號’………………………………………………...…60
圖6.結球白菜’亞蔬1號’葉球剖面圖……………………………….….….61
圖7. DELTA-T DEVICES-Cambridge-U.K.氣孔儀外觀圖………….…….61
圖8.葉綠素螢光測定儀MINI-PAM Photosynthesis Yield Analyzer...…….62
圖9.PAM-2000測定葉綠素a螢光曲線……….…………………….….….62
圖10.結球白菜’亞蔬1號’及’瑞農’苗期栽培之情形…………………......63
圖11. 分光光度計Amersham Biosciences-Ultrospec 2100 pro.………..…63
圖12.結球白菜’亞蔬1號’ 及’瑞農’進行常溫20 / 18 ℃未淹水與淹水時的處理照片…………………………………………………………………….64
圖13.結球白菜’亞蔬1號’ 及’瑞農’進行高溫40 / 35 ℃未淹水與淹水時的處理照片……………………………………………….……………………64
圖14.蛋白質萃取的流程圖……….………..………………...…………….65
圖15. Micro BCA 濃度校正曲線……………………………….………....65
圖16. Matrixscience.com數據處理流程圖………………………………...66
圖17. MS/MS Search的條件設定…………………………….……………66
圖18. 結球白菜’亞蔬1號’在24小時不同處理後的植株情形…………….67
圖19. 結球白菜’亞蔬1號’在48小時不同處理後的植株情形…...………..67
圖20. 結球白菜’瑞農’在48小時不同處理後的植株情形…...……….…...68
圖21. 結球白菜’瑞農’在48小時不同處理後的植株情形…...………..…..68
圖22.高溫淹水對結球白菜’亞蔬1號’ 葉片Fv/Fm值之影響……….….69
圖23.高溫淹水對結球白菜’亞蔬1號’葉片氣孔導度之影響…….………69
圖24.高溫淹水對結球白菜’瑞農’葉片Fv/Fm值之影響………….………70
圖25.高溫淹水對結球白菜’瑞農’葉片氣孔導度之影響…….……………70
圖26.結球白菜’亞蔬一號’常溫、未淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形………………...……………..71
圖27.結球白菜’亞蔬一號’常溫、淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形…….…………………...…….71
圖28.結球白菜’亞蔬一號’高溫、未淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形………………………..……..72
圖29.結球白菜’亞蔬一號’高溫、淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形……………………..………..72
圖30. 結球白菜’亞蔬1號’常溫20 ℃、未淹水處理48小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形……………………73
圖31. 結球白菜’亞蔬1號’常溫20 ℃、淹水處理48小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形……………………..……….73
圖32. 結球白菜’亞蔬1號’高溫40 ℃、未淹水處理48小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形……………………….......74
圖33. 結球白菜’亞蔬1號’高溫40 ℃、淹水處理48小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形……………..........….………74
圖34.結球白菜’瑞農’常溫、未淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形………………......……………..75
圖35.結球白菜’ 瑞農’常溫、淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形…….…………………..…....…….75
圖36.結球白菜’ 瑞農’高溫、未淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形…………………………..……..76
圖37.結球白菜’ 瑞農’高溫、淹水處理24小時的葉片蛋白質,利用pI值之不同進行分離之PF 2D第一維圖形……………………..……………..76
圖 38. 結球白菜’亞蔬1號’常溫20℃、未淹水處理24小時,利用PF 2D第一維分離後,pI大於8以上之部分,利用SDS進行分離之膠體圖。…....77
圖 39. 結球白菜’亞蔬1號’常溫20℃、淹水處理24小時,利用PF 2D第一維分離後,pI大於8以上之部分,利用SDS進行分離之膠體圖。….…...77
圖40. 結球白菜’亞蔬1號’常溫20 ℃、未淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。…………………………………………………………78
圖41. 結球白菜’亞蔬1號’常溫20 ℃、淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..………………………………….................................….78
圖42. 結球白菜’亞蔬1號’高溫40 ℃、未淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..…………………………………….………………….79
圖43. 結球白菜’亞蔬1號’高溫40 ℃、淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..………………………………….……………………….79
圖44. 結球白菜’亞蔬1號’常溫20 ℃、未淹水處理48小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..………………………………………..……………….80
圖45. 結球白菜’亞蔬1號’常溫20 ℃、淹水處理48小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..……………………………………………..…………….80
圖46. 結球白菜’亞蔬1號’高溫40 ℃、未淹水處理48小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。…………………………………………………………81
圖47. 結球白菜’亞蔬1號’高溫40 ℃、淹水處理48小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。……………………………………………………………81
圖48. 結球白菜’亞蔬1號’常溫20 ℃、未淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。…………………………………………………………82
圖49. 結球白菜’亞蔬1號’常溫20 ℃、淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..………………………………….................................….82
圖50. 結球白菜’亞蔬1號’高溫40 ℃、未淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..…………………………………….………………….83
圖51. 結球白菜’亞蔬1號’高溫40 ℃、淹水處理24小時的葉片蛋白質,利用ProteoVue模擬二維膠體圖依pI值之不同編輯橫軸為所屬pI值區域,縱軸為時間(min)。..………………………………….……………………….83
圖52. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 24 hr,pI為6.51~6.22的第二維曲線差異比較圖。……………………………………84
圖53. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 24 hr,pI為5.21~5.05的第二維曲線差異比較圖。……………………………………84
圖54. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 24 hr,pI為5.05~4.75的第二維曲線差異比較圖。……………………………………85
圖55. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 24 hr,pI為4.75~4.45的第二維曲線差異比較圖。……………………………………85
圖56. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及常溫20 ℃淹水 48 hr,pI為6.29~5.99的第二維曲線差異比較圖。……………………………………86
圖57. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及常溫20 ℃淹水 48 hr,pI為5.99~5.69的第二維曲線差異比較圖。…………………………………….86
圖58. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃未淹水 48 hr,pI為6.29~5.99的第二維曲線差異比較圖。…………………………………87
圖59. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 48 hr,pI為6.29~5.99的第二維曲線差異比較圖。…………………………………….87
圖60. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 48 hr,pI為5.99~5.69的第二維曲線差異比較圖。……………………………………...88
圖61. 結球白菜’亞蔬1號’ 常溫20 ℃未淹水及高溫40 ℃淹水 48 hr,pI為5.39~5.09的第二維曲線差異比較圖。……………………….….…………88
圖62. 結球白菜’瑞農’ 常溫20 ℃未淹水及常溫20 ℃淹水 24 hr,pI為6.27~5.96的第二維曲線差異比較圖。………………………….…………89
圖63. 結球白菜’瑞農’ 常溫20 ℃未淹水及常溫20 ℃淹水 24 hr,pI為5.66~5.36的第二維曲線差異比較圖。………………………….…………89
圖64. 結球白菜’瑞農’ 常溫20 ℃未淹水及高溫40 ℃未淹水 24 hr,pI為6.27~5.96的第二維曲線差異比較圖。………………………….…………90
圖65. 結球白菜’瑞農’ 常溫20 ℃未淹水及高溫40 ℃未淹水 24 hr,pI為5.06~4.76的第二維曲線差異比較圖。………………………….…………90
圖66. 結球白菜’瑞農’ 常溫20 ℃未淹水及高溫40 ℃未淹水 24 hr,pI為4.76~4.45的第二維曲線差異比較圖。………………………….…………91
圖67. 結球白菜’瑞農’ 常溫20 ℃未淹水及高溫40 ℃未淹水 24 hr,pI為4.45~4.15的第二維曲線差異比較圖。………………………….…………91
圖68. 蛋白質點23-8之圖譜……………………………………..………..92
圖69. 蛋白質點23-9之圖譜………………………………………………92
圖70. 蛋白質點28-12之圖譜……………………………………………..93
圖71. 蛋白質點28-20之圖譜………………………………..……………93
圖72. 蛋白質點29-18之圖譜……………………………………………...94
圖73. 蛋白質點29-19圖譜………………………………………………....94
圖74. 蛋白質點29-21之圖譜……………………………………………..95
圖75. 蛋白質點29-23之圖譜……………………………………………..95
圖76. 蛋白質點30-16之圖譜……………………………………………..96
圖77. 蛋白質點30-17之圖譜…………………………………………..…96
圖78. 蛋白質點30-20之圖譜……………………………………………..97
圖79. 蛋白質點30-20之圖譜……………………………………………...97
圖80. 蛋白質點48-1之圖譜………………………………………………98
圖81. 蛋白質點48-3之圖譜………………………………………………98
圖82. 蛋白質點48-4之圖譜………………………………………………99
圖83. 蛋白質點48-5之圖譜………………………………………………99
圖84. 蛋白質點48-6之圖譜……………………………………………...100
圖85. 蛋白質點48-7之圖譜………………………………………..……100
圖86. 蛋白質點48-9之圖譜……………………………………………..101
圖87. 蛋白質點48-11之圖譜…………………………………………….101
圖88. 蛋白質點R2之圖譜……………………………………………….102
圖89. 蛋白質點R3之圖譜………………….…………………………….102
圖90. 蛋白質點R4之圖譜……………………………………………….103
圖91. 蛋白質點R6之圖譜……………………………………………….103
圖92. 蛋白質點R7之圖譜……………………………………………….104
圖93. 蛋白質點R8之圖譜……………………………………………….104
圖94. 蛋白質點R9之圖譜……………………………………………….105
圖95. 蛋白質點R12之圖譜…………..………………………………….105
圖96. 蛋白質點R13之圖譜…………..………………………………….106
圖97. 蛋白質點R18之圖譜…………..………………………………….106
圖98. 蛋白質點R20之圖譜…………..………………………………….107
圖99. 蛋白質點R21之圖譜…………..………………………………….107
圖100. 蛋白質點R22之圖譜………..…………………………….…….108
圖101. 蛋白質點R24之圖譜…………..………………………….…….108
圖102. 蛋白質點R25之圖譜…………..………………………….…….109
圖103. 蛋白質點R26之圖譜…………..……………………….……….109
圖104. 蛋白質點R27之圖譜…………..……………………….……….110
圖105. OEE的作用機制圖……………………………………………….111
圖106. 經由四個蛋白質複合體依序傳遞電子來形成ATP的作用機制圖
……………………………………………..……………………………….111
圖107.Ribulose 1,5-bisphosphate的作用機制圖………………………….112
圖108.RuBisCO的作用機制圖……………………………………….….112
圖109.UDP-Glc dehydrogenase的作用機制圖……………………………113
圖110.UDP-glucose經UDP-Glc dehydrogenase形成UDP-glucuronic acid(Robert, 1997) …………………………………………………………113
圖111. EIIAB的作用機制圖………………………………….…………..114
圖112. Nitrate reductase的作用機制圖……………….………………….114
柒、參考文獻
1.新竹區農業改良場45年年報, 1956.
2.黃徳昌. 1988. 台灣十字花科黑腐病防治研究近況 蔬菜品種改良研討會專輯 p29-46.
3.陳榮輝、廖芳心. 1986. 夏季甘藍品種觀察試驗 蔬菜作物試驗研究彙報第四輯 p9-10.
4.張育森、俞美如. 2001. 花壇植物的相對葉綠素螢光及相對氣孔導度與其臭氧抗性之關係. Botanical Bulletin of Academia Sinica 42-4, p265-272
5.康俊根、翟依仁、張京社、秦海明、卜曉東. 2002.甘藍耐熱性鑑定方法.中國蔬菜China vegetables 1, p4-7.
6.顏永福. 2005. 結球白菜耐淹水能力分析. 行政院農委會.
7.老嘉玲. 2004. 高溫逆境下不同水稻品種之生理反應及蛋白質表現. 國立台灣大學農藝學系碩士論文.
8.楊紹榮. 1998.甘藍. 台南區農業改良場特刊第2號.
9.羅志平. 2005. 小白菜經植物生長物質前處理對淹水逆境之反應. 國立台灣大學園藝學研究所碩士論文.
10.鞠世杰、閻秀峰 2004. 高等植物的3-羥基-3-甲基戊二醯輔酶A還原酶. 植物生理學通訊 40(1), 104-110.
11.董建國、李振國. 1983. 乙烯生物合成中間體-1-氮基環丙烷-1-酸及其丙二酸結合物的測定. 植物生理學通訊.(19):46-48.
12.簡宏堅. 2003. Production of novel pharmaceutical enzymes using transgenic rice: cloning, expression and characterization of thermostable L-aminoacylase from aspergillus oryzae.
13.Abbott, A., 1999. A post-genomic challenge:learning to read pattern of protein synthesis. Nature 402, 715-720.
14.Allegre, A., Silvestre, J., Morad, P., Kallerhoff, J., Pinelli, E., 2004. Nitrate reductase regulation in tomato roots by exogenous nitrate:a possible role in tolerance to long-term root anoxia. Journal of Experimental Botany 55, 2625-2634.
15.AVRDC. 1981. Progress Report for 1980. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan, R.O.C.
16.AVRDC. 1982. Progress Report for 1981. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan, R.O.C.
17.Betgovargez, E., Simonian, M. H., 2003. Reproducibility and Dynamic Range Characteristics of the ProteomeLab PF 2D System. Coulter Application Information Bulletin A-1964A.
18.Beyer, E. M. Jr., 1975. Abscission:the initial effect fo ethylene is in the leaf blade. Plant Physiol. 55:322-327.
19.Boller, T., Kende, H., 1980. Regulation of wound ethylene synthesis in plants. Nature 286:259-260.
20.Chase, M. W., 1993. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard. 80, 528-580.
21.Christiane F. S., Shabala S., 2003. Screening methods for waterlogging tolerance in lucerne:comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology. 30:335-343.
22.Demming-Adams B., Adams W. W., 1996. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Science 1:21-26.
23.Du, Juan, Hong-Li Xie, De-Qiang Zhang, Xin-Qiang He, Min-Jie Wang, Ying-Zhang Li, Ke-Ming Cui and Meng-Zhu Lu. 2006. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6, 881–895.
24.Eggert, A., Van Hasselt, P.R., Breeman, A.M., 2003. Differences in thermal acclimation of chloroplast functioning in two ecotypes of Valonia utricularis (Chlorophyta). European Journal of Phycology. European Journal of Phycology 38: 123-131.
25.Eskling, M., Arvidsson, P. O., and Akerlund, H. E., 1997. The xanthophyll cycle, its regulation and components. Physiologia Plantarum 100:806-816.
26.Fenyo, D., 2000. Identifying the proteomic:softwarte tools. Curr. Opin. Chem. Biotechnol. 11, 391-395.
27.Fida, M. A., Setsuko, K., 2004. A proteomic approach to analyze salt-responsive proteins in rice leaf seath. Proteomics 4, 2072-2081.
28.Fredericksen, T. S., Steiner, K. C., Skellly, J. M., Joyce, B. J., Kolb, T. E., Kouterick, K. B., and J. A. Ferdinand. 1996. Diel and seasonal patterns of leaf gas exchange and xylem water potentials of different-sized Prunus serotina Ehrh. trees. Forest Science 42: 359-365.
29.Frey, A. D., Kallio, P. T., 2003. Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiology Reviews 27: 525-545.
30.Garrett, R. H. Grisham, C. M. 2nd ed., 1995. Saunders college publishing. Biochemistry.
31.Gilmore, A. M., Hazlett, T., and Govindjee, L., 1995. Xanthophyll cycle-dependent quenching photosystem II chlorophyll a fluorescence:Formation of a quenching complex with a short fluorescence lifetime. Plant Biology 92:2273-2277.
32.Gygi, S. P., Aebersold, R., 2000. Mass spectrometry and proteomics. Curr. Opin. Chem. Biotechnol. 4, 489-494.
33.Gygi S., Rochem, Y., Franza, B. R., Aebersokl, R., 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720-1730.
34.Haupt-Herting, S., Klug. K., Fock, H. P., 2001. A new appr ouch to measure gross CO2 fluxes in leaves. Cross CO2 assimilation, photonespiration, and mitochondrion respiration in the light in tomato under drought stress. Plant Physiol. 126, 388-396.
35.Herbert, B., 1999. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 20, 660-663.
36.Hong N.K., Jae S.C., Tae J.C., Hak Y.K., 2003. Salicylic acid and wounding induce defense-related proteins in Chinese cabbage. Korean Jounal of Bioogical Science 7:1-7.
37.Ishida, A., Toma, T., Mats umoto Y., Yap, S.K., Maruyama, Y., 1996. Diurnal change in leaf gas exchange characteris tics in the uppermost canopy of a rain forest tree, Dryobalanops aromat ica Gaerth. F. Tree Physiol 16:779-85.
38.Ishida, A., Toma, T., Maruyama, Y., 1999. Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle, azimuth, and canopy position in the t ropical pioneer tree, Macaranga conifera. Tree Physiol 19:117-24.
39.Jones, E. B., 1996. Epinasty promoted by salinity or ethylene is indicator of salt-sensitivity in tomatoes. Plant Cell Environ, 19:93-100.
40.Jones J. G., Hardy L., 1989. Stress and cognitive functioning in sport. Journal of Sports Sciences, 7, 41-63.
41.Kato, M. C., Hikosaka, K., Hirotsu, N., Makino, A., and Hirose, T., 2003. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms the rate of photoinactivation in photosystem II. Plant Cell Physiol. 44(3):318-325.
42.Karas, M., Bachmann, D., Hillenkamp, F., 1985. Influence of the Wavelenghth in High-Irradiance Ultraviolet Laser Desorption. Anal. Chem. 57, 2935.
43.Karas, M., Hillenkamp, F., 1988. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. Anal. Chem. 60, 2299.
44.Kawasaki, S., Barchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H. J., 2001. Gene expression protiles during the imitial phase of salt stress in rice. Plant Cell. 13, 889-906.
45.Kautsky H., Hirsch A., 1934. Das Fluoreszenzverhalten griiner Pflanzen. Biochem. Zeitschrift 274:422-434.
46.Koch, G.W., Amthor, J.S., Goulden, M.L., 1994. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiol 14:347-60.
47.Komatsu, S., Xin Z., and Naoki, T., 2005. Comparison of Two Proteomics Techniques Used to Identify Proteins Regulated by Gibberellin in Rice. Journal of proteome research 5, 270-276.
48.Kootenm O. V., She J. F., 1990, The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn Res, 25(4):147-150.
49.Lambers, H., Chapin III, F. S., Pons T. L., 1998. Plant physiological ecology. New York: Springer-Verlag. 540.
50.Lao C. L., 2004. The physiological response and protein expression profile of different rice (Oryza sativa L.) cultivars under high temperature stress. Graduate Institute of Agronomy in National Taiwan University.
51.Larkcom, J., 1991. Oriental vegetables. The complete guide for garden and kitchen. John Murray Ltd.
52.Lei, L. M., Song, L. R., 2004. Cloning and characterization of the gene for UDPGlc dehydrogenase from the cyanobacterium, Microcystis aeruginosa FACHB 905[J]. Acta. Botanica Sinica, 46(11):1373.
53.Lieberman, M., Kunishi, A. T., Mapson, L. W., Wardale, D. A., 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 41:376-382.
54.Lipscomb, M. V., and Nilsen, E. T., 1990. Environmental and physiological factors influencing the natural distribution of evergreen and deciduous ericaceous shrubs on northeast- and southwest-facing slopes of the southern appalachin mountains.II. water relations. Amer. J. Bot. 77: 517-526.
55.Lo, C. P., 2005. Responses of Brassica rapa L. Chinensis Group cv. flooding stress with the pre-application of plant growth substances. Graduate Institute of Horticulture in National Taiwan University.
56.Maor, B. P., Griffith, C. L., Jeramia, J. O., 2004. Biosynthesis of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the pathogenic fungus Cryptococcus neoformans[J]. J. Biochem, 381.
57.McBurney, T. A. and Costigan, P. A., 1984. The relationship between plant water potential and transpiration in young Cabbage plants growing in wet soil. J. Exp. Bot. 35: 1032-1038.
58.Miziorko, H. M. and Lorimer. G. H., 1983. Rubulose-1,5-bisphophate carboxylase-oxygenase. Annu. Rev. Biochem. 52, 507-535.
59.Molloy, M. P., 2000. Two-dimensional electrophoresis of membrane protein using immobilized pH gradients. Anal. Biochem. 280. 1-10.
60.Ogawa J, Miyake H, Shimizu S., 1995. Purification and characterization of N-carbamoyl-L-amino acid amidohydrolase with broad substrate specificity from Alcaligenes xylosoxidans. Appl Microbiol Biotechnol. 43(6), 1039-1043.
61.Pandey, A., Lewitter, F., 1999. Nucletide sequence database:a gold mine for biologist. Trends Biochem. Sei. 24, 276-280.
62.Pirondini Andrea, Giovanna Visioli, Aliosha Malcevschi, Nelson Marmiroli., 2006. A 2-D liquid-phase chromatography for proteomic analysis in plant tissues. Journal of Chromatography B, 833 91–100.
63.Ravanel, S., Gakiere, B., Job, D., Douce, R., 1998. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95:7805-7812.
64.Robert, E. C., Rafael, F. S., Ivo van de, R., Martin, E. T., 1997. Properties and Kinetic analysis of UDP-glucose dehydrogenase from group A Streptococci. The Journal of biological chemistry. 272(6), 3416-3422.
65.Robert, R. K. and Michael, E. S., 1992 Photoaffinity Labeling of Mature and Precursor Forms of the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase after Expression in Escherichia coli. Plant Physiol. February; 98(2): 546–553.
66.Rohacek, K., and M. Bartak., 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37: 339-363.
67.Rokka, A., Zhang, L., Ara, E. M., 2001. RubisCO activase:an enzyme with a temperature-dependent dual function. Plant Physiol. 25, 463-471.
68.Shaner, D. L., 1991. Imidazolinone Herbicides. Pesticide Outlook, Vol. 2, No. 4, 21-24.
69.Smith, P., Krohn, R. L., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Prorenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. T. and Klenk, D. C. 1985. Measurement of protein using bicinchonic acid. Anal. Biochem. 15:75-85.
70.SKALNÍKOVÁ, H., H. KOVÁŘOVÁ, J. MOOS, V. FILOVÁ, P. HALADA., 2005. SYSTÉM PRACUJÍCÍ NA PRINCIPU DVOJROZMĚRNÉ KAPALINOVÉ CHROMATOGRAFIE PROTEINŮ JAKO ALTERNATIVA K DVOJROZMĚRNÉ GELOVÉ ELEKTROFORÉZE. Chem. Listy 99, 952−956.
71.Soldi, Monica, C. Sarto, C. Valsecchi, F. Magni,V. Proserpio, D. Ticozzi and P. Mocarelli., 2005. Proteome profile of human urine with two-dimensional liquid phase fractionation. Proteomics 5, 2641–2647.
72.Taiz L., and Zeiger E., 2002. Sinaure Associates Inc., Sunderland, Massaxhusetts. Plant Physiology 3rd ed. pp 114, 137-162.
73.Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., 1988. Protein and Polymer Analysis up to m/z 100000 by Laser Ionization time-of Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2, 151.
74.Tranel, P. J., and Wright T. R., 2002. Resistance of Weeds to ALS-Inhibiting Herbicides: What have we learned? Weed Science, Vol. 50, 700-712.
75.Varshavsky, A., 1996. The N-end rule:Functions, mysteries, use. Proc. Natl. Aead. Sci. USA 93, 12142-12149.
76.Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, L., Hochstrasser, D. F., Williams, K. L., 1996. Progress with proteome projects:why all proteins expressed by a genome should be identifiexd and how to do it. Biothechnol. Genet. Eng. Rev. 13,19-50.
77.Yang S.R., 1998.Cabbage. Tainan District Agricultural Research and Extension Station Council of Agriculture, Executive Yuan. monograph NO.2.
78.Zivy, M., de Vienne, D., 2000. Protemics:a link between genomics, genetics and physiology. Plant Mol. Biol. 44, 575-580.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊