跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許莆明
研究生(外文):HSU PU-MING
論文名稱:甘藷cysteine protease SPCP3之功能性研究
論文名稱(外文):Functional study of sweet potato cysteine protease SPCP3
指導教授:陳顯榮陳顯榮引用關係
指導教授(外文):Hsien-Jung Chen
學位類別:碩士
校院名稱:中國文化大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:108
中文關鍵詞:葉片老化半胱胺酸蛋白脢老化相關基因
外文關鍵詞:senescence-associated genessenescencecysteine protease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1
我們先前已從甘藷老化葉片中分離一SPCP3全長cDNA,能轉譯出一可能的含granulin半胱胺酸蛋白酶。葉片老化是葉子生長發育過程的最後一個階段而且已被視為是計畫性細胞凋亡(programmed cell death)的一種形式 。在植物PCD過程中主要參與的酵素有papain-type 半胱胺酸蛋白酶和Caspase-like 蛋白酶。最近一新奇的位於C端含有granulin的半胱胺酸蛋白酶形式已被了解且從植物多種不同情形下所誘導的PCD過程中被分離出來。Granulin是一古老的蛋白家族,在動物中參與調控細胞生長與刺激細胞分化。在植物中,C端含有一類似granulin區域的半胱胺酸蛋白酶的生理角色和功能目前尚不清楚,但報導推測植物中含granulin之半胱胺酸蛋白酶的角色可能與植物生長發育和逆境下所誘導之計畫性細胞凋亡的過程有關。本研究以扣減雜交的方式與重組載體技術,獲得分別含有不同部分SPCP3基因的重組載體pBI121。以農桿菌經由floret dip 方法產生基因轉殖阿拉伯芥。在確認含有全長SPCP3基因且在mRNA與蛋白質階層中皆有表現之T1轉殖植株的外觀形態分析顯示,轉殖T1植株與對照組相比有較早開花的現象。果莢成熟後的長度也較短,且果莢黃化的程度也較快。基於這些研究的結果,認為甘藷SPCP3是一功能性的老化相關基因,且似乎直接扮演與老化有關的角色。
We have previously isolated a full-length SPCP3 cDNA, which encodes a putative granulin-containing cysteine protease from sweet potato senescent leaves. Leaf senescence is the final stage of leaf development and has been considered as a type of programmed cell death. In plants the main enzymes involved in this process are papain-type cysteine proteases and Caspase-like proteases. Recently a novel type of cysteine proteases containing C-terminal granulin-like domains were identified and isolated from various plants under different conditions that induce PCD. Granulins are a family of evolutionarily ancient proteins that are involved in regulating cell growth and in stimulating cell division in animals. The physiological role and function of plant novel cysteine proteases containing C-terminal granulin-like domains were not clear. However, several studies concerning its association with programmed cell death during plant development and under stress conditions were described. In this study, we obtained recombinant pBI121 vectors containing different portions of SPCP3 inserts by deletion and recombinant vector technology. Transgenic Arabidopsis plants harboring different SPCP3 portions described above will be produced with Agrobacterium-mediated transformation via floral dip. Morphological analysis in T1 transgenic plants containing full length SPCP3 which that have been charactered expression in mRNA and protein level, which that displayed T1 transgenic plants flowered earlier, the length of siliques is shorter and the degree of senescence of siliques is more evident. These results support that sweet potato SPCP3 is a functional senescence-associated gene and likely plays a role directly in association with senescence.
內容目次
頁次
第一章 前言
ㄧ、葉片的老化………………………………………………………… 1
二、計畫性細胞凋亡(PCD )……………………………………………2
三、C端含granulin之半胱胺酸蛋白酶………………………………… 4
四、Granulin 相關之研究 ………………………………………………5
五、含Granulin區域之半胱胺酸蛋白酶的相關研究 …………………6
六、研究基因功能性之基因轉殖植株系統…………………………… 9
七、研究目的 ………………………………………………………… 11
第二章 材料與方法
Ⅰ材料………………………………………………………………… 13
1) 選殖於pGEM-T easy 載體之甘藷老化葉片中所分離之梭基端含
有Granulin區域的半胱胺酸蛋白酶SPCP3之全 cDNA ( GenBank
Accession no. AF259983 ) …………………………………………13
2) 載體 pGEM-T easy ……………………………………………… 13
3) 載體pBI121 ……………………………………………………… 13
4) 大腸桿菌DH5α(E. coli DH5α)…………………………………14
III
5) 農桿菌LBA4404(Agrobacterium tumefaciens LBA4404) ………14
6) 抗體 ………………………………………………………………14
Ⅱ方法
一、重組載體的構築……………………………………………………15
A.重組載體pGEM-T easy與大腸桿菌DH5α勝任細胞的轉
形作用(transformation): ………………………………………15
B. 小量純化質體DNA(使用QIAGEN的QIAprep Spin Miniprep 套
組) : …………………………………………………………… 17
C. 聚合酶鏈鎖反應:………………………………………………18
D. 瓊酯糖凝膠中DNA片段的萃取( QIAGEN的 QIAquick Gel
Extration 套組 ) :……………………………………………… 19
E. 沈澱反應(precipitation):………………………………………20
F. 黏合反應(pGEM-T east vector system I,Promega):……………21
G. 大腸桿菌DH5 α 勝任細胞(Invitrogen) 的轉形作用與藍白篩
選:………………………………………………………………22
H. 載體pGEM-T easy選殖基因片段之DNA序列分析:………… 25
I. 大量製備載體pBI121: …………………………………………25
1) 在營養培養基中擴增載體pBI121
IV
2) 鹼裂解法
3) 使用QIAprep Spin Miniprep 套組純化質體DNA
J. 構築重組載體pBI121:………………………………………… 28
二、農桿菌的電穿孔轉形作用…………………………………………33
A. 農桿菌生化檢測……………………………………………… 33
B. 農桿菌勝任細胞的製備與電穿孔轉形作用………………… 34
三、阿拉伯芥的花序浸泡轉形作用產生轉殖植株……………………35
四、轉殖阿拉伯芥T0植株的篩選、種植及基因組PCR………………36
A. 轉殖阿拉伯芥T0植株的篩選與種植…………………………36
B. 基因組PCR …………………………………………………… 39
五、轉殖阿拉伯芥T1植株的定性分析 ……………………………… 42
A. 轉殖阿拉伯芥T1植株的篩選 ……………………………… 42
B. χ2- test 遺傳分離法則符合度測驗………………………… 42
C. Total RNA之分離與RT-PCR ………………………………… 43
D. 蛋白質的之電泳分析與蛋白質膠體墨點雜交分析 ……… 46
六、 轉殖阿拉伯芥T1植株生長發育過程與外觀形態之觀察………53
第三章 結果
一、 含不同部分半胱胺酸蛋白分解酶基因SPCP3 ( 全長SPCP3基因、
V
SPCP3基因減除C端類似Granulin區域與只含C端類似Granulin區域之
cDNA片段 ) 之pBI121重組載體的構築: …………………………55
二、農桿菌之基因轉殖:………………………………………………58
三、轉殖阿拉伯芥T0植株之篩選與Genomic PCR確認: ………………59
四、轉殖阿拉伯芥T1植株之定性分析:………………………………61
五、轉殖阿拉伯芥T1植株外觀型態之比較:…………………………62
第四章 討論
一、轉殖阿拉伯芥植株之轉殖效率:…………………………………65
二、轉殖阿拉伯芥植株含有SPCP3基因:……………………………65
三、SPCP3表現會促進轉殖T1植株提早開花:………………………67
四、轉殖T1植株花序中SPCP3表現會影響果莢發育:………………69
參考文獻
Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV. The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. JCell Biol 2000; 149: 1335–44.

Asano M, Suzuki S, Kawai M, Miwa T, Shibai H. Characterization of novel cysteine proteases from germinating cotyledons of soybean [Glycine max (L.) Merrill]. JBiochem 1999; 126: 296-301.

Avrova AO, Stewart HE, De Jong W, Heilbronn J, Lyon GD, Birch PRJ. A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol Plant-Microbe Interact 1999; 12: 1114–19.

Bateman A, Belcourt D, Bennett HPJ, Lazure C, Solomon S. Granulins. A novel class of peptide from leukocytes. Biochem Biophys Res Commun 1990; 173: 1161-68.

Bateman A, Bennett HPJ. Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 1998; 158: 145-51.

Beers EP. Programmed cell death during plant growth and development. Cell Death Differ 1997; 4: 649-61.

Bernier G. The control of floral evocation and morphogenesis.Annu Rev of Plant
Phys and Plant Mol Bio 1988; 39: 175–219.

Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P. Physiological signals
that induce flowering. The Plant Cell 1993; 5: 1147–1155.

Brown CA, Halper J. Mitogenic effects of transforming growth factor type e on epithelial and fibroblastic cells - comparison with other growth factors. Exp Cell Res 1990; 190: 233-42.

Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot 1997; 48: 181-99.

Buckner B, Janick-Buckner D, Gray J, Johal GS. Cell-death mechanism in maize. Trends Plant Sci 1998; 3: 218–23.

Carbonell J, Garc˘´a-Mart˘´nez JL. Fruit set of unpollinated ovaries of Pisum sativum L.: influence of vegetative parts. Planta 1980; 147: 444–50.

Carbonell J, Garc˘´a-Mart˘´nez JL. Ribulose 1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L. Planta 1985; 164: 534–39.

Carrasco P, Carbonell J. Involvement of a neutral proteolytic activity in the
senescence of unpollinated ovaries of Pisum sativum L. Physiol Plant 1988; 72: 610–16.

Cercós M, Carrasco P, Granell A, Carbonell J. Biosynthesis and degradation of Rubisco during ovary senescence and fruit development induced by gibberellic acid in Pisum sativum. Physiol Plant 1992; 85: 476–82.

Chen HJ, Hou WC, Jane WN, Lin YH. Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. Tainong 57). J Plant Physiol 2000; 157: 669-76.

Chen HJ, Hou WC, Liu JS, Yang CY, Huang DJ, Lin YH. Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. J Exp Bot 2004; 55: 825-35.

Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH. Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas (L.) Lam.) leaves. J Plant Physiol 2003; 160: 547-55.


Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH. Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 2006; 163: 863-76.

Chen GH, Huang LT, Yap MN, Lee RH, Huang YJ, Cheng MC, Chen SCG.
Molecular characterization of a senescence-associated gene encoding cysteineproteinase and its gene expression during leaf senescence in sweet potato. Plant Cell Physiol 2002; 43: 984–91.

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998; 16: 735–743.

Corbesier L, Coupland G. Photoperiodic flowering of Arabidopsis: integrating
genetic and physiological approaches to characterization of the floral
stimulus. Plant, Cell and Environment 2005; 28: 54–66.

Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR. Identification of
dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. J Exp Bot 2003; 54: 1045-56.

Diaz-Cueto L, Stein P, Jacobs A, Schultz RM, Gerton GL. Modulation of mouse preimplantation embryo
development by acrogranin (epithelin/granulin precursor). Dev Biol 2000; 217: 406-18.

Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol Biol 1996; 30: 755–67.

D’Silva I, Poirier GG, Heath MC. Activation of cysteine proteases in cowpea plants during the hypersensitive response – a form of programmed cell death. Exp Cell Res 1998; 245: 389-99.

Ellis, R.E., Yuan, J., and Horvitz, H.R. Mechanisms and functions of ceII death. Annu Rev Cell Biol 1991; 7: 663-698.

Gan S, Amasino RM. Making sense of senescence. Plant Physiol 1997; 113: 313-19.

Garc˘´a-Mart˘´nez JL, Carbonell J. Fruit set of unpollinated ovaries of Pisum sativum L.: influence of plant growth regulators. Planta 1980; 147: 451–56.

Granell A, Harris N, Pisabarro AG, Carbonell J. Temporal and spatial expression of a thiolprotease gene during pea ovary senescence, and its regulation by gibberellin. Plant J 1992; 2: 907–15.

Greenberg JT. Programmed cell death: A way of life for plants. Proc Natl Acad Sci USA 1996; 73: 12094-97.

Harrak H, Azelmat S, Baker EN, Tabaeizadeh Z. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome 2001; 44: 368-74.

Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa NK, Nishimura M, Hara-Nishimura I. A proteinase-sorting body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol 2001; 42: 894-99.

Heath MC. Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 1998; 104: 117-24.

Hrabal R, Chen Z, James S, Bennett HPJ, Ni F. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Biol 1996; 3: 747-52.

Hou WC, Chen HJ, Chen YC, Lin YH, Yang LL, Lee MH. Activity staining of isocitrate lyase after electrophoresis on either native or sodium dodecylsulfate polyacrylamide gels. Electrophoresis 2001; 22: 2653-5.

Jonson T, Mahlamäki EH, Karhu R, Gorunova L, Johansson B, Höglund M. Characterization of genomically amplified segments using PCR: Optimizing relative-PCR for reliable and simple gene expression and gene copy analyses. Genes Chromosomes Cancer 2000; 29: 192-99.

Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 1993; 129: 175-82.

Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annual
Review of Plant Biology 2004; 55: 521–535.

Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 1987; 148: 350-82.

Makino A, Osmond B. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 1991; 96: 355-62.

Parnell PG, Wunderlich J, Carter B, Jaroslava H. Transforming growth factor e: amino acid analysis and partial amino acid sequence. Growth Factors 1992; 7: 65-72.

Pechan T, Jiang B, Steckler D, Ye L, Lin L, Luthe DS, Williams WP. Characterization of three distinct cDNA clones encoding cysteine proteinases from maize (Zea mays L.) callus. Plant Mol Biol 1999; 40: 111–19.

Pennell RI, Lamb C. Programmed cell death in plants. Plant Cell 1997; 9: 1157-68.

Pontier D, Balague C, Roby D. The hypersensitive response: A programmed cell death associated with plant resistance. Crit Rev Acad Sci 1998; 321: 721-34.

Quirino BF, Noh YS, Himelblau E, Amasino RM. Molecular aspects of leaf
senescence. Trends Plant Sci 2000; 5: 278-82.

Roger I. Pennell and Chris Lamb. Programmed Cell Death in Plants. Plant Cell 1997; 9: 1157-1168.

Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press; 1989.

Shoyab M, McDonald VL, Byles C, Todaro GJ, Plowman GD. Epithelins 1 and 2, isolation and characterization of two cysteine-rich growth modulating proteins. Proc Natl Acad Sci USA 1990; 87: 7912-16.

Solary E, Eymin B, Droin N, Haugg M. Proteases, proteolysis, and apoptosis. Cell Biol Toxicol 1998; 14: 121-32.

Solomon M, Belenghi B, Delledone M, Menachen E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 1999; 11: 431-43.

Tabaeizadeh Z, Chen RD, Yu LX, Lafontaine JG. Identification and immunolocalization of a 65 kDa drought induced protein in cultivated tomato Lycopersicon esculentum. Protoplasma 1995; 186: 208–19.

Tolkatchev D, Xu P, Ni F. A peptide derived from the C-terminal part of a plant cysteine protease folds into a stack of two b-hairpins, a scaffold present in the emerging family of granulin-like growth factors. J Pept Res 2001; 57: 227-33.

Trinh DP, Brown KM, Jeang KT. Epithelin/granulin growth factors: Extracellular cofactors for HIV-1 and HIV-2 Tat proteins. Biochem Biophys Res Commun 1999; 256: 299-306.

Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96: 245-54.

Vranken WF, Chen ZG, Xu P, James S, Bennett HPJ, Ni F. A 30-residue fragment of the carp granulin-1protein folds into a stack of two b-hairpins similar to that found in the native protein. J Pept Res 1999; 53: 590-97.

Xia X, Serrero G. Identification of cell surface binding sites for PC-cell-derived growth factor, PCDGF, (epithelin/granulin precursor) on epithelial cells and fibroblasts. Biochem Biophys Res Commun 1998; 245: 539-43.

Xu FX, Chye ML. Expression of cysteine protease during developmental events associated with programmed cell death in brinjal. Plant J 1999; 17: 321-27.

Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

Yamada K, Matsushima R, Nishimura M, Hara-Nishimura I. A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiol 2001; 127: 1626-34.

Zhang H, Serrero G. Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci USA 1998; 95: 14202-07.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top