跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李力行
研究生(外文):LIhsing-Lee
論文名稱:多孔矽與金屬薄膜之加熱性質探討
論文名稱(外文):Thermal properties of porous silicon and metal membranes
指導教授:林嘉洤
指導教授(外文):Jia-Chuan Lin
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:113
中文關鍵詞:多孔矽加熱蝕刻熱分析超臨界流體
外文關鍵詞:porous siliconheating etchinganalyzed thermal propertiessuper crystal fluid (SCF)
相關次數:
  • 被引用被引用:3
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技走向高性能時代且強調體積需要輕薄短小,而所產生的熱量也隨之增加,近而所多電子大廠紛紛投大量人力與資金開發散熱效率高的元件,而在本研究探討的有四個主要部分,第一蝕刻製程的不同以照光及加熱蝕刻的部分,討論其在不同濃度、蝕刻時間、不同激發源(照光或加熱),來探討其結構的差異之處;在第二部分以超臨界二氧化碳的方式將還原出來銀的粒子填入多孔矽之孔洞中,之後第三部分,將完成超臨界製程的多孔矽試片以不同溫度的退火製程,使原本呈顆粒狀的銀粒子形成均勻的薄膜在孔壁的表面,最後探討主要照光、加熱、及填入銀粒子對散熱的效果如何,另外因填入奈米銀粒子,使得其多孔矽之電性會有改善的可能。
最後得知散熱效果較佳者在本篇研究中以加熱蝕刻後的試片為佳,其蝕刻條件為蝕刻時間1hr、蝕刻溫度65℃,且取照光試片經由超臨界二氧化碳填入銀粒子其散熱效果會略微提升,且其導電性也會在隨之增加。
Present day, many of the 3C product become more and more small and powerful so that the plenty of heat will be bring out from computer or other 3C products as we use. In this study, using chemical etching wafer to produce porous silicon and to determine their thermal properties was main idea.
There are four part of this essay. There were different kinds of subject to discuss in first part which was discussed different structures from using lighting or heating to etching wafer. In the second part, by using super crystal fluid (SCF), the reduction of particle of silver would be put into pore of porous silicon. And then, there was discussed annealing porous silicon after SCF in the third part. The last step, it was determined structure, thermal properties, and relation of voltage-current.
Finally, the specimen which was decided that thermolysis property was better than others was prepared by heating chemical etching for 1hr at 65℃.And specimen was improved thermolysis property and relation of voltage-current by filled in nano-silver though SCF.
目錄
中文摘要----------------------------------------------------------------------------I
英文摘要--------------------------------------------------------------------------Ⅱ
謝誌--------------------------------------------------------------------------------Ⅲ
目錄--------------------------------------------------------------------------------Ⅳ
圖目錄-----------------------------------------------------------------------------Ⅴ
表目錄-----------------------------------------------------------------------------Ⅹ
第一章 前言-----------------------------------------------------------------------1
1-1多孔矽的歷史與發展-----------------------------------------------1
1-2研究動機--------------------------------------------------------------5
第二章 基礎理論-----------------------------------------------------------------6
2-1 矽原子在氫氟酸之溶解過程-------------------------------------6
2-2形成多孔矽之模形理論--------------------------------------------8
2-3 光電效應-----------------------------------------------------------15
2-4 熱電效應-----------------------------------------------------------17
2-5 超臨界二氧化碳--------------------------------------------------19
2-6超臨界流體沈積技術---------------------------------------------22
2-7 超臨界的應用-----------------------------------------------------26
2-8 退火-----------------------------------------------------------------28
第三章 實驗方法---------------------------------------------------------------35
3-1 矽片準備-----------------------------------------------------------35
3-2矽晶片蝕刻---------------------------------------------------------36
3-3 運用超臨界二氧化碳將金屬填入多孔矽--------------------38
3-4已填入銀多孔矽之熱處理---------------------------------------39
第四章 結果與討論------------------------------------------------------------42
4-1光激發與熱激發的蝕刻比較------------------------------------42
4-2 金屬銀用超臨界二氧化碳填入多孔矽之情況--------------73
4-3 填入銀之多孔矽之熱處理情況--------------------------------83
4-4 各試片之熱、電特性分析----------------------------------------88
第五章 結論--------------------------------------------------------------------106
未來展望------------------------------------------------------------------------109
參考文獻------------------------------------------------------------------------110
圖目錄
圖1-1 陽極氧化參數與p型矽基板之關係圖-------------------------------4
圖1-2 陽極氧化參數與n型矽基板之關係圖-------------------------------4
圖2-1多孔矽化學反應式分解圖----------------------------------------------7
圖2-2 比爾模型示意圖--------------------------------------------------------10
圖2-3 擴散表面和孔洞成長間的關係圖-----------------------------------12
圖2-4 量子模型理論-----------------------------------------------------------14
圖2-5 金屬之光電效應示意圖-----------------------------------------------16
圖2-6 半導體之光電效應示意圖--------------------------------------------16
圖2-7 珀爾帖效應示意圖-----------------------------------------------------19
圖2-8 賽背克效應示意圖-----------------------------------------------------19
圖2-9 物質三相圖--------------------------------------------------------------21
圖2-10 RESS 流程示意圖-----------------------------------------------------24
圖2-11 GAS/SAS 製程流程圖-----------------------------------------------26
圖3-1 鐵氟龍蝕刻槽示意圖--------------------------------------------------37
圖3-2 超臨界系統示意圖-----------------------------------------------------39
圖3-3 高溫爐照片--------------------------------------------------------------40
圖3-4高溫爐示意圖------------------------------------------------------------41
圖3-5升溫曲線圖---------------------------------------------------------------41
圖4-1 照光蝕刻示意圖--------------------------------------------------------42
圖4-2 加熱蝕刻示意圖--------------------------------------------------------42
圖4-3 N-type silicon 蝕刻示意圖--------------------------------------------44
圖4-4 P-type silicon 蝕刻示意圖--------------------------------------------44
圖4-5 N on P-type substrate silicon蝕刻示意圖---------------------------44
圖4-6 不同濃度N-type silicon蝕刻多孔矽SEM上視圖----------------46
圖4-7 不同濃度N-type silicon蝕刻多孔矽SEM側視圖----------------47
圖4-8不同濃度P-type silicon蝕刻多孔矽SEM上視圖------------------48
圖4-9不同濃度P-type silicon蝕刻多孔矽SEM側視圖------------------49
圖4-10不同濃度N on P-type substrate silicon多孔矽SEM上視圖--------------------------------------------------------------------------------------50
圖4-11不同濃度N on P-type substrate silicon多孔矽SEM側視圖--------------------------------------------------------------------------------------51
圖4-12不同蝕刻時間、蝕刻濃度1:4 N-type silicon蝕刻多孔矽SEM上視圖-----------------------------------------------------------------------------54
圖4-13不同蝕刻時間、蝕刻濃度1:4 N-type silicon蝕刻多孔矽SEM側視圖-----------------------------------------------------------------------------55
圖4-14 未照光蝕刻N-type silicon之SEM圖-----------------------------56
圖4-15不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:4 P-type silicon蝕刻多孔矽SEM上視圖-------------------------------------------------------57
圖4-16不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:4 P-type silicon蝕刻多孔矽SEM側視圖-------------------------------------------------------58
圖4-17不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:4 N on P-type substrate silicon蝕刻SEM上視圖--------------------------------------------59
圖4-18不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:4 N on P-type substrate silicon蝕刻SEM側視圖--------------------------------------------60
圖4-19 未照光蝕刻N on P-type substrate silicon之SEM圖------------61
圖4-20不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:3 N-type silicon蝕刻後SEM上視圖-------------------------------------------------------------63
圖4-21不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:3 N-type silicon蝕刻後SEM側視圖-------------------------------------------------------------64
圖4-22不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:3 P-type silicon蝕刻後SEM上視圖-------------------------------------------------------------65
圖4-23不同蝕刻時間、蝕刻濃度HF(55%):C2H5OH=1:3 P-type silicon蝕刻後SEM側視圖-------------------------------------------------------------66
圖4-24 不同加熱溫度蝕刻N on P-type substrate silicon之SEM圖---69
圖4-25 不同加熱溫度蝕刻P-type silicon之SEM圖---------------------70
圖4-26 不同激發源的蝕刻表面顯微圖------------------------------------71
圖4-27 加熱蝕刻N-type silicon之SEM圖--------------------------------72
圖4-28 反應過快超臨界後之SEM圖--------------------------------------74
圖4-29 高濃度試片之SEM圖-----------------------------------------------74
圖4-30 低濃度試片之SEM圖-----------------------------------------------75
圖4-31 在超臨界製程時壓力過大所造成的結塊照片------------------76
圖4-32 在超臨界製程時壓力減半後之照片------------------------------76
圖4-33照光蝕刻之SEM圖---------------------------------------------------78
圖4-34加熱蝕刻之SEM圖---------------------------------------------------78
圖4-35 照光蝕刻孔洞示意圖------------------------------------------------79
圖4-36加熱蝕刻孔洞示意圖-------------------------------------------------79
圖4-37 照光蝕刻試片經超臨界填入銀粒子之SEM圖-----------------81
圖4-38 加熱蝕刻試片經超臨界填入銀粒子之SEM圖-----------------81
圖4-39照光蝕刻試片填入銀粒子後示意圖-------------------------------82
圖4-40加熱蝕刻試片填入銀粒子後示意圖-------------------------------82
圖4-41 未經退火之數位照片------------------------------------------------84
圖4-42 不同溫度退火彩色照片---------------------------------------------84
圖4-43 退火700℃之數位照片----------------------------------------------84
圖4-44 熱處理700℃試片下的矽晶片-------------------------------------85
圖4-45 墊片的EDS測量圖---------------------------------------------------85
圖4-46退火溫度700℃之SEM圖-------------------------------------------86
圖4-47退火溫度500℃之SEM圖-------------------------------------------86
圖4-48退火溫度300℃之SEM圖-------------------------------------------87
圖4-49退火溫度100℃之SEM圖-------------------------------------------87
圖4-50 熱流式DSC示意圖---------------------------------------------------89
圖4-51 補償式DSC示意圖---------------------------------------------------90
圖4-52 不同蝕刻時間蝕刻後之DSC分析---------------------------------92
圖4-53 增加照光次數且不同蝕刻濃度之DSC分析---------------------94
圖4-54 不同蝕刻濃度試片之SEM上視、側視圖--------------------------95
圖4-55 加熱蝕刻N on P-type substrate silicon試片之DSC分析------98
圖4-56 加熱蝕刻N-type silicon試片之DSC分析-----------------------99
圖4-57 加熱蝕刻P-type silicon試片之DSC分析-----------------------100
圖4-58 經由超臨界填入銀粒子之DSC分析----------------------------102
圖4-59 不同退火溫度之熱分析--------------------------------------------103
圖4-60 經超臨界之多孔矽電性分析--------------------------------------105
圖4-61不同溫度熱處理電性分析------------------------------------------105
表目錄
表2-1 氣、液、超臨界流體之特性比較--------------------------------------22
表4-1 墊片的EDS測量表----------------------------------------------------85
表4-2 不同蝕刻時間蝕刻後之比熱值(Cp)比較--------------------------92
表4-3 增加照光次數且不同蝕刻濃度之比熱值比較--------------------93
表4-4 加熱蝕刻N on P-type substrate silicon之比熱(Cp)值------------98
表4-5 加熱蝕刻N-type silicon之比熱(Cp)值-----------------------------99
表4-6 加熱蝕刻P-type silicon之比熱(Cp)值----------------------------100
表4-7 經由超臨界填入銀粒子之比熱(Cp)值----------------------------102
表4-8經由不同退火溫度之比熱(Cp)值-----------------------------------103
參考文獻
[1]R.J. Martin-Palma, J.M. Martinez-Duart, L. Li, R.A. Levy, Materials Science and Engineering C 19, p.359, 2002.
[2]R. Bilyalov, C.S. Solanki, J. Poortmans, O.Richad, H. Bender, M. Kummer, H. von Kanel, Thin Solid Films 403, p.170, 2002.
[3]P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, Thin Solid Film, p.297, 1997.
[4]P. Vitanov, N. Tyutyundzhiev, M. Kamenova, V. Gantcheva, Proceedings of Solar World Congress, Harare, 1995.
[5]Uhir, Bell System Tech. J., 35, 333, 1956.
[6]L. Jia and S. L. Zang, S. P. Wong and H. Wilson, S. K. Hark, Z. F. Liu and S. M. Cai, “Furthur Evidence for the Quantum-Confined
Electrochemistry Model Of The Formation Mechanism of P(-)-Type Porous Silicon,” Applied Physics Letter vol. 69, Iss. 22, p. 3399~3401, 1996.
[7]V. Lehmann, “the Physics of Macropore Formation in Low Doped n-Type Silicon,” J. Electrochem. Soc., vol. 140, no. 10, 1993.
[8]D.R. Turner, J. Electrochem Soc., vol. 105, no.402, 1958.
[9]Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarash, J. electrochem. Soc., vol.122, no.1351, 1975.
[10]C. Pickering, M. J. J. Beale, D. J. Robbins, P. J. Pearson and R. Greef, J. Phys. C, Solid State Phys., vol.17, no.6553, 1984.
[11]Canham, L. T., Appl. Phys. Lett., vol.57, no.1046, 1990.
[12]Cullis, A. G. and Canham, L. T., Nature 353, 335, 1991.
[13]Bsiesy, A., vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci254, 195, 1991.
[14]Sagnes, I., Halimaoui, A., Vincent, G, and Badoz, P. A., Appl. Phys. Lett. (in press)
[15]Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. Vol.59, no.2814, 1991.
[16]Perez, J. M., Villalobos, J., McNeill, Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D., and Glosser, R., Appl. Phys. Lett.
[17]Tsai, C. Li, K.-H., Kinosky, D. S., Qian, R.-Z., Hsu, T.-C., Irby, J. T. Banerjee, S.K., Tasch, A. F., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. Vol.60, no.1700, 1992.
[18]Prokes, S. M., Freitas, J. A. and Searson, P. C., Appl. Phys. Lett. Vol.60, no.3295, 1992.
[19]Prokes, S. M., Carlos, W. E. and Bermudez, V. M., Appl. Phys. Lett. 61, 1447, 1992.
[20]McCord, P., Yau, S. L. and Bard., A. J., Science 257, 68, 1992.
[21]Brandt, M. S., Fuchs, H. D., Stutzmann, M., Webber, J. and Cardona, M., Soild State Comm. 81, 307, 1992.
[22]Axel Richter IEEE electron device letters, vol. 12 No. 12, 1991.
[23]G. Smestad and H. Ries, Solar Energy Materials Solar Cells 25, 51, 1992.
[24]G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, Solar Cells 25, 51, 1992.
[25]T. Taliercio, M. Dilhan, E. Massone, A. M. Gue, B. Fraisse, A. Foucaran, Thin Solid Films vol.255, no.310, 1995.
[26]L. Z. Yu and C. R. Wie, Electronics Lett. Vol.28, no.911, 1992.
[27]Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, J. Electrochem. Soc. 122, 1351, 1975.
[28]Cullis, A. G. and Canham, L. T., Nature 353, 335, 1991.
[29]Bsiesy, A., vial, J. C. Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci 254, 195, 1991.
[30]Sagnes, I., Halimaoui, A., Vincent, G, and Badoz, P. A., Appl. Phys. Lett. ( in press )
[31]Tsai, C. Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 59, 2814, 1991.
[32]Tsai, C. Li, K.-H., Kinosky, D. S., Qian, R.-Z., Hsu, T,-C., Irby, J. T. Banerjeee, S. K., Tasch, A. F., Campgell, J. c., Hance, B. K. and White, J. M., Appl. Phys. Lett. 60, 1770, 1992.
[33]Perez, J. M., Villalobos, J., Mcneill, Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D. and Glosser, R., Appl. Phys. 61, 563, 1992.
[34]Art Homa, “Alternative Approaches for DMFC Design:Silicon-Based Systems” 6th Annual SMALL FUEL CELLS(sm), 2004.
[35]T. Unagami and K. Kato, Trans. IEEE Jap., vol.98-A, No. 10, pp.
[36]C.Pickering, M.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, J. Phys. C: Solid State Phys., 17,5535, 1984.
[37]M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, J. Cryst. Growth, 73, 622, 1985.
[38]M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, Appl. Phys. Lett., 46.86, 1985.
[39]I. M. Young, M. I. Beale and J.D. Benjamin Appl. Phys. Lett., 46, 1133, 1985.
[40]R.L. Smith, S.F. Chuang, and S.D. Collins, J. Electron. Mater., 17,533, 1988.
[41]R.L. Smith and S.D. Collins, Phys. Rev. A, 39,5409, 1989.
[42]R.L. Smith and S.D. Collins, Phys. J. Appl.Phys., 71, R1, 1992.
[43]T.A. Witten and L.M. Sander Phys. Rev. B, 27, 5686, 1983.
[44]A.J. Read, R.J. Needs, K.J. Naish, L.T. Canham, P.D.J. Calcott, and A. Qteish, Phys, Rev. Lett., 69,1232, 1992.
[45]G.D. Sanders and Y.C. Chang, Phys. Rev. B, 45,856, 1992.
[46]V.Lemann, U. Gösele, Appl. Phys. Lett. 58, 856, 1991.
[47]V.P. Parkhutik, J.M. Albella, J.M. Martinez-Duart, J.M. Gomez-Rodriguez, A. M. Baro, and V.I. Shershulsky, ibid. , 2, 366, 1993.
[48]H. Yan and X. Hu, J. Appl. Phys., 73, 4324, 1993.
[49]Cageniard de la Tour C. , Ann. Chmm., 22, pp. 410, 1822
[50]J. C. Giddings, M. N. Meyers, L. Mclaren and R. A. Keller, Science, 162, 37, 1968.
[51]D. W. Matson, J. L. Fulton, R. C. Petersen and R. D. Smith, Ind. Eng. Chem. Res., 26, 2298, 1987.
[52]P. G. Debenedetti, AIChE J., 36, 1289, 1990.
[53]J. Jung and M. Perrut, J. Supercritical Fluids, 20, 179-219, 2001.
[54]郭子楨“半導體製程之綠色革命-超臨界流體技術之應用“工安環保報導 第19期 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top