跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林念芝
研究生(外文):Nien-Chih, Lin
論文名稱:聚丙烯不織布經乙烯基單體接枝與聚麩胺酸及幾丁聚醣交聯固定對敷料抗菌性物性及大鼠傷口癒合成效之研究
論文名稱(外文):Acrylic acid Grafted onto Polypropylene Nonwoven Fabric Immobilized with γ-PGA and Chitosan for Wound Dressing
指導教授:王權泉蘇慶華蘇慶華引用關係
指導教授(外文):Chyung-Chyung, WangChing-Hua,Su
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:聚丙烯不織布聚麩胺酸幾丁聚醣抗菌率抑菌圈
外文關鍵詞:Polypropyleneγ-Poly-glutamic acidChitosanAntibacterialInhibition zone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要係以丙烯酸(簡稱AA)為單體,過氧化二苯甲醯(簡稱 BPO)為化學起始劑,與聚丙烯不織布(簡稱PP不織布)進行接枝反應,並以聚麩胺酸(簡稱γ-PGA)交聯劑Glycerol polyglycidyl ether(簡稱GPE)、Di-glycerol polyglycidyl ether(簡稱DGPE)及Polyglycerol polyglycidyl ether(簡稱PGPE)將聚麩胺酸固定於不織布表面,接著再以戊二醛將幾丁聚醣 (Chitosan)固定於聚丙烯不織布。由結果顯示,隨著GPE、DGPE、PGPE交聯劑的用量、AA接枝率及固定溫度與固定時間的增加,經改質聚丙烯不織布上之聚麩胺酸固定率有上升的趨勢;另外,經聚麩胺酸固定之聚丙烯不織布再經幾丁聚醣固定後,其固定率會隨著戊二醛的用量及固定時間的增加而上升,但當達飽和狀態時,其固定率則不會再大幅度提升。至於抗菌方面,經γ-PGA及幾丁聚醣固定之改質聚丙烯不織布其抗菌率會隨著γ-PGA溶液濃度的增加而下降,但其下降幅度並不大,在聚麩胺酸溶液濃度為3%時,其抗菌率仍可達78.68%。另外,於抑菌圈測試中,樣本於聚麩胺酸溶液濃度為0.5%,幾丁聚醣溶液濃度為5%,固定時間為二十四小時,其抑菌圈可達12mm。由敷材之吸水膨潤性測試可看出敷材之吸水膨潤性會因為幾丁聚醣之特性而隨著緩衝溶液的pH值上升而下降;另外敷材之吸水膨潤性會隨著γ-PGA固定量的上升而上升,但固定γ-PGA及幾丁聚醣後,其敷材之吸水性則會隨著γ-PGA固定濃度的上升而下降;其擴散係數則呈現相同的情形。最後由大鼠傷口癒合測試及病理顯微觀察可知,經聚麩胺酸及幾丁聚醣混合固定之接枝聚丙烯不織布其癒合效果均較單一聚麩胺酸或幾丁聚醣之癒合效果為佳。
In this research, the polypropylene (abbr. PP) nonwoven fabric grafted with acrylic acid (abbr. AA) using benzoyl peroxide as a chemical initiator during the course of the polymerization has been investigated. Then the surface of PP nonwoven fabric was immobilized with a mixture of γ-Poly-glutamic acid(abbr. γ-PGA) and chitosan by glutaraldehyde and Glycerol polyglycidyl ether(abbr. GPE), Di-glycerol polyglycidyl ether(abbr. DGPE), Polyglycerol polyglycidyl ether(abbr. PGPE) as cross-linker.
The experimental results showed that the immobilization ratio increased with the increase of graft yield of AA monomer. Moreover, the immobilization ratio were found to increase with the increase of immobilization time and the add-on of glutaraldehyde、GPE、DGPE and PDPE aqueous solution. On the other hand, the antibacterial capacity decreases with the increase of the ratio of γ-PGA. When the ratio of γ-PGA is 3%, the antibacterial capacity is 78.68%. The inhibition zone of the sample (the ratio of γ-PGA is 0.5%,the ratio of chitosan is 5% and immobilization time is 24 hours) is 12mm. On the other hand, the swelling ratio decreases with the increase of the ratio of chitosan in the composites and the pH values in buffer solutions. However, the swelling ratio decreases with the increase of the ratio of γ-PGA in all pH of buffer solutions.
On skin wound healing of guinea-pig, it has been established that the immobilized with a mixture of γ-PGA and chitosan is better than only γ-PGA or chitosan. Another, the wound was covered by PP nonwoven with different monomer and immobilized with γ-PGA and chitosan completely healed for 21days, and fall off automatically. Therefore, PP nonwoven immobilized with γ-PGA and chitosan is a safe biomaterial for use as a wound dressing for skin healing.
中文摘要……………………………………………………………… Ⅰ
英文摘要……………………………………………………………Ⅱ~Ⅲ目錄…………………………………………………………………Ⅳ~Ⅸ
圗目錄………………………………………………………………Ⅵ~Ⅸ
表目錄 …………………………………………………………………Ⅹ
壹、緒論…………………………………………………………………1
1-1研究動機…………………………………………………………… 1
1-2聚麩胺酸特性介紹……………………………………………… 2~8
1-3幾丁聚醣特性介紹………………………………………………9~10
1-4文獻回顧……………………………………………………… 11~23
1-5研究目的……………………………………………………………24
貳、理論……………………………………………………………… 25
2-1酸鹼溶液對聚麩胺酸膨潤性之影響………………………… 25~26
2-2 接枝共聚合理論……………………………………………… 27~30
2-3 聚麩胺γ-PGA及幾丁聚醣固定反應機構……………………31~32
2-4幾丁聚醣之抗菌反應機構…………………………………………33
2-5 皮膚組織結構………………………………………………… 34~35
2-6 傷口癒合機制………………………………………………… 36~41
叁、實驗…………………………………………………………………42
3-1 實驗藥品………………………………………………………42~44
3-2 實驗儀器………………………………………………………45~46
3-3實驗步驟及方法……………………………………………… 47~55
肆、結果與討論……………………………………………………… 56
4-1固定條件對聚麩胺酸及幾丁聚醣之固定率的影響………… 56~58
4-2聚麩胺酸與幾丁聚醣溶液濃度之比例及幾丁聚醣固定時間對固定率之影響……………………………………………………………… 59
4-3 聚麩胺酸及幾丁聚醣固定於聚丙烯不織布之官能基變化……………………………………………………………………… 60
4-4敷材之吸水膨潤性測試……………………………………… 61~64
4-5 聚麩胺酸及幾丁聚醣固定於聚丙烯不織布掃描式電子顯微鏡觀察敷材之表面狀況…………………………………………………65~68
4-6敷材之抗菌性的測試………………………………………… 69~74
4-7 聚麩胺酸及幾丁聚醣固定敷材之傷口癒合觀察…………… 75~81
伍、結論…………………………………………………………………82
參考文獻 ………………………………………………………… 82~91
1. Ing-Lung Shih, Yi-Tsong Van, The production of poly-(γ-glutamic acid) from microorganisms and its various applications, Bioresource Technology 79, P207-225(2001)
2. 陳永琇、徐善慧,傷口敷料與幾丁聚醣,化工,第53卷第1期,P21-28(2006)
3. 蘇志遠,納豆菌代謝產物的開發與應用,生物產業Bioindustry,Vol. 14 No2(2003)
4. 蘇遠志,聚麸胺酸(γ-PGA)之發酵生產與應用,生物產業,Vol.14 No.3,P.31-38(2003)
5. 何觀輝,聚麸胺酸鹽水膠(γ-Polyglutamate Hygrogels)之功能特性,化工資訊與商情,第35期,P.54-60(2006)
6. Ikada Y., C. Nishi, N. Nakajima, In vitro evaluation of cytotoxicity of di-epoxy compounds. J. of Biomed. Mater. Res., 29: 829-834(1995)
7. 何觀輝,聚麸胺酸水膠及其工業應用,生物產業,Vol.16 No.4,P.313-321(2005)
8. Ho, Guan-Huei: Sumarized Scientific Research and Industrial Development Report on γ-PGAproject (Grant Aid No. 9201018358/9101018353). The Minstry of Economic Affairs, ROC., Unpublished report(2003)
9. 何觀輝,聚麸胺酸之結構特性與工業應用,生物產業,Vol.16 No3,P.172-182(2005)
10. Goto A., Kunioka M. Biosynthesis and hydrolysis of Poly(γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56, P1031-1035(1992)
11. 何觀輝,聚麸胺酸之結構特性與化學特性,化工資訊與商情,第31期,P.64-71(2006)
12. 謝學真、謝玠揚,聚麩胺酸及幾丁聚醣複和生醫基材之製程探討、性質改良及制放應用,國立台灣大學化學工程學研究所博士學位論文,P20-24(2005)
13. 林玫嬌,多孔狀幾丁聚醣複合基質之製備及特性探討,國立台灣大學化學工程學研究所碩士學位論文,P.7-9,P17-20 (2001)
14. 林文源,幾丁聚醣抗菌作用的研究,國立台灣大學食品科技研究所博士論文,P8-10 (1995)
15. 陳永琇、徐善慧,傷口敷料與幾丁聚醣,化工,第53 卷第1 期,P21-28(2006)
16. 林文源,幾丁聚醣抗菌作用的研究,國立台灣大學食品科技研究所博士論文,P.8-10 (1995)
17. 朱祐生、蘇慶華,幾丁聚醣抑制細菌生長之機轉,臺北醫學大學生物醫學材料研究所碩士論文,2004
18. Sawamura M. On Bacillus natto. J. Coll. Argic. Toko 5, P189-191(1913)
19. Bovarnick M. The formation of extracellular d (-)glutamic acid poypeptide by Bacillus subtilis. J. Biol. Chem. 145, P415-424(1942)
20. Ashiuchi M., Kamei T., Baek D.H., Shin S.Y., Sung M.H., Soda K. Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Appl. Microbiol. Biotechnol.57, P764-769(2001)
21. Ashiuchi M., Misono H. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Microbiol. Biotechnol. 59, P9-14(2002).
22. Shih I.L., Van Y.T. The production of poly(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79, P207-225(2001)
23. 何觀輝,γ-Polyglutamic acid(γ-PGA)---Structural Characteristics and Industrialn Application. Bioindustry, Vol. 16, No3(2005)
24. Fujii H. On the formation of mucilage by Bacillus natto. Part III. Chemical constitutions of mucilage in natto (1). Nippon Nogeikagaku Kaishi. 37, P407-411(1963)
25. Goto A., Kunioka M. Biosynthesis and hydrolysis of Poly(γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56, P1031-1035(1992)
26. Borbély M., Nagasaki Y., Borbély J., Fan K., Bhogle A., Sevoian M. Biosynthesis and chemical modification of poly(γ-glutamic acid). Polym. Bull. 32, P127-132(1994)
27. 林佳儀、陳榮輝、林進德,γ聚麩胺酸對人類纖維母細胞及臍帶血管內皮細胞增生之影響,國立海洋大學食品科學系碩士學位論文,P8-10(2006)
28. 程志仁、陳阿煌、彭金恢、蔣燕南,戊二醛修飾幾丁聚醣在藥物包覆及釋放研究,高雄師範大學化學系碩士論文,P2-5(2004)
29. Papineau, A. M., Hoover, D. G., Knorr, D., and Farkas, D. F., Antimicrobial Effect of Water-soluble Chitosans with High Hydrostatic Pressure, Food Biotechnol, Vol. 5, P45 (1991)
30. Jin Hong Kim et al., Properties and Swelling Characteristics of Cross-Linked Poly(vinyl alcohol)/Chitosan Blend Membrane, Journal of Polymer Science, Vol. 45, P1711-1717 (1992)
31. Kang De Yao et al., pH-sensitivity of Hydrogels Based on Complex Forming Chitosan:Polyether Interpenetrating Polymer Network, Journal of Polymer Science, Vol. 48, P343-354 (1993)
32. Travel, M. N. and A. Domard, Relation Between the Physicochemical Characteristics of Collagen and its Interactions with Chitosan, Biomaterials, Vol. 14, P930-938 (1993)
33. Muzzarelli R. A. A. et al., Stimulatory Effect on Bone Formation Exerted by a Modified Chitosan, Biomaterials, Vol. 15, P1075 (1994)
34. Yoshimitsu Kuroyanagi et al., Development of a New Wound Dressing with Antimicrobial Delivery Capability, Wound Repair and Regeneration, Vol. 2, P122-129 (1994)
35. A. D. Sezer, J. Akbuga, Controlled Release of Piroxicam from chitosan Beads, International Journal of Pharmaceutics, Vol. 121, P113-116 (1995)
36. D. Thacharodi, K. Panduranga Rao, Collagen-chitosan Composite Membranes for Controlled Release of Propranolol Hydrochloride, International Journal of Pharmaceutics, Vol. 120, P115-118 (1995)
37.Rong Huei Chen, Horng-Dar Hwa, Effect of Molecular Weight of Chitosan with the Same Degree of Deacetylation on the Thermal Mechanical and Permeability Properties of the Prepared Membrane, Carbohydrate Polymers, Vol. 29, P353-358 (1996)
38.Yun Lin Guan et al., pH Effect on Correlation Between Water State and Swelling Kinetics of the Crosslinked Chitosan/Polyether Semi-IPN Hydrogel, Journal of Applied Polymer Science, Vol. 62, P1253-1258 (1996)
39. Rao S. B., Sharma P., Use of Chitosan as a Biomaterial:Studies on its Satefy and Hemostatic Potential, Journal of Biomedical Materials Research, Vol. 34, P21 (1997)
40.Qiqing Zhang et al., Preparation and Characterization of Collagen-chitosan Composites, Journal of Applied Polymer Science, Vol. 64, PP.2127-2130 (1997)
41.Kojima K. et al., Collagen Typing of Granulation Tissue Induced by Chitin and Chitosan, Carbohydrate Polymers, Vol. 37, P109 (1998)
42. Ming Larng Tsaih, Rong Huei Chen, Effects of Ionic Strength and pH on the Diffusion Coefficients and Conformation of Chitosans Molecule in Solution, Journal of Applied Polymer Science, Vol. 73, P2041-2050 (1999)
43. Donna Schulz Torres et al., Tendon Cell Contraction of Collagen-GAG Matrices in Vitro: Effect of Cross-linking, Biomaterials, Vol. 21, P1607-1619 (2000)
44. Xiao Fei Liu et al., Antibacterial Action of Chitosan and Carboxymethylated Chitosan, Journal of Applied Polymer Science, Vol. 79, P1324-1335 (2001)
45. Z. Jia, D. Shen, W. Xu, Synthesis and Antibacterial Activities of Quaternary, Ammonium Salt of Chitosan Carbohydrate Research, Vol. 333, 1–6(2001)
46. M.W. Huh, I. K. Kang, D. H. Lee, W. S. Kim, D. H. Lee, L. S. Park, K. E. Min,K. H. Seo, Surface Characterization and Antibacterial Activity of Chitosan-grafted Polyethylene Terephthalate Prepared by Plasma Glow Discharge,Journal of Applied Polymer Science,Vol. 81, 2769-2778(2001)
47. H. K. Noa, N. Y. Park, S. H. Lee, Antibacterial Activity of Chitosans andChitosan Oligomers with Different Molecular Weights, International Journal of Food Microbiology, Vol. 74, 65-72(2002)
48. M. R.Yang, K. S. Chen, J. C. Tsai, C. C. Tseng, S. F. Lin, The Antibacterial Activities of Hydrophilic-modified Nonwoven PET, Materials Science and Engineering, Vol. 20, 167–173(2002)
49. Lloyd, D. R. et al., Coupling of Acrylic Polymers and Collagen by Use of a Water-soluble Carbodiimide. I.Optimization of Reaction Conditions, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 17, PP.3459-3472 (1979)
50. Lloyd, D. R. et al., Coupling of Acrylic Polymers and Collagen by Use of a Water-soluble Carbodiimide. Ⅱ.Investigations of the Coupling Mechanism, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 17, PP.3473-3483 (1979)
51. Ito, Y. et al., Synthesis and Antithrombogenicity of Anionic Polyurethanes and Heparin-bound Polyurethanes, Journal of Biomedical Materials Research, Vol. 20, PP.1157-1177 (1986)
52. Hsiue, G. H., J. M. Yang and R. L. Wu, Preparation and Properties of a Biomaterial:HEMA Grafted SBS by γ-ray Irration, Journal of Polymer Science, Vol. 22, PP.405-415 (1988)
53. D. Quteish, S. Singrao and A. E. Dolby, Light and Electron Microscopic Evaluation of Biocompatibility:Resorption and Penetration Characteristics of Human Collagen Graft Materials, Journal of Clinical Periodontology, Vol. 18, PP.305-311 (1991)
54. Ito, Y. et al., Materials for Enhancing Cell Adhesion by Immobilization of Cell-adhesive Peptide, Journal of Biomedical Materials Research, Vol. 25, PP.1325-1337 (1991)
55. P. R. Hyder et al., Cross-linked Bovine TypeⅠ Collagen:Analysis of Properties, Journal of Periodontology, Vol. 63, PP.182-186 (1992)
56. Li S. T., Collagen Biotechnology and its Medical Applications, Biomedical Engineering - Applications, Basis & Communications, Vol. 5, PP.646-657 (1993)
57. Minami, Y., Sugihara, H. and Oono, S., Reconstruction of Cornea in Three-dimensional Collagen Gel Matrix Culture, Investigative Ophthalmology & Visual Science, Vol. 34, PP.2316-2324 (1993)
58. Kang I. K. et al., Immobilization of Proteins on Poly(methyl methacrylate) Films, Biomaterials, Vol. 14, PP.792-797 (1993)
59. H. Tadokoro, Polyurethane Surface Modification by Graft Polymerization of Acrylamide for Reduced Protein Adsorption and Platelet Adhesion, Biomaterials, Vol. 14, PP.442-448 (1993)
60. Huang-Lee, L. L. H. and M.E. Nimni, Crosslinked CNBr-activated Hyaluronon-collagen Matrices:Effects on Fibroblast Contraction, Matrix Biology, Vol. 14, PP.147-157 (1994)
61. Vries, H. J. C. de et al., Reduced Wound Contraction and Scar Formation in Punch Biopsy Wounds. Native Collagen Dermal substitutes. A Clinical Study, British Journal of Dermatology, Vol. 132, PP.690-697 (1995)
62. S. D. Lee, G. H. Hsiue, C. Y. Kao, P. C. T. Chang, Artifical Cornea:Surface Modificationof Silicone Rubber Membrane by Graft Polymerization of HEMA GlowDischarge, Biomaterials, Vol. 17, 587-595(1996)
63. Ellis, D.L. and I.V. Yannas, Recent Advances in Tissue Synthesis in Vivo by Use of Collagen-glycosaminoglycan Copolymers, Biomaterials, Vol. 17, PP.297-299 (1996)
64. D. Thacharodi, K. Panduranga Rao, Collagen-chitosan Composite Membranes Controlled Transdermal Delivery of Nifedipine and Propranolol Hydrochloride, International Journal of Pharmaceutics, Vol. 134, PP.239-241 (1996)
65. Lee, S. D., G. H. Hsiue, P. C. T. Chang, and C. Y. Kao, Plasma-induced Grafted Polymerization of Acrylic Acid and Subsequent Grafting of Collagen onto Polymer Film as Biomaterials, Biomaterials, Vol. 17, PP.1599-1608 (1996)
66. M. Dana Harriger et al., Glutaraldehyde Crosslinking of Collagen Substrates Inhibits Degradation in Skin Substitutes Grafted to Athymic Mice, Journal of Biomedical Materials Research, Vol. 35, PP. 137-145 (1997)
67. Vasilets, V. N., G. Hermel, U. Konig, C. Werner, M. Muller, F. Simon, K. Grundke, Y. Ikada, and H.-J. Jacobasch., Microwave CO2 Plasma-initiated Vapour Phase Graft Polymerization of Acrylic Acid onto Polytetrafluoroethylene for Immobilization of Human Thrombomodulin, Biomaterials, Vol. 18, PP.1139-1145 (1997)
68. Jeffrey O. Hollinger et al., Recombinant Human Bone Morphogenetic Protein-2 and Collagen for Bone Regeneration, Journal of Biomedical Materials Research, Vol. 43, PP.356-364 (1998)
69. Kang I. K. et al., Synthesis and Surface Characterization of Heparin-immobilized Polyether-urethanes, Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 36, PP.2331-2338 (1998)
70. P. B. Van Wachem et al., Characterization and Biocompatibility of Epoxy-crosslinked Dermal Sheep Collagens, Journal of Biomedical Materials Research, Vol. 47, PP.270-277 (1999)
71. Shigehiro Hirano et al., Wet Spun Chitosan-collagen Fibers, Their Chemical N-modifications and Blood Compatiblity, Biomaterials, Vol. 21, PP.997-1003 (2000)
72. Shigehiro Hirano et al., Wet Spun Chitosan-collagen Fibers, Their Chemical N-modifications and Blood Compatiblity, Biomaterials, Vol. 21, PP.997-1003 (2000)
73. Wen-Fu Lee, Ying-Jou Chen, Studies on Preparation and Swelling Properties of the N-isopropylacrylamide/Chitosan Semi-IPN and IPN Hydrogels, Journal of Applied Polymer Science, Vol. 82, PP.2487-2496 (2001)
74. M. G. Tucci, G. Ricotti, Chitosan and Gelatin as Engineered Dressing for Wound Repari, Journal of Bioactive and Compatible Polymers, Vol. 16, PP.145-157 (2001)
75. N. Shanmugasundaram et al., Collagen-chitosan Polymeric Scaffolds for the in Vitro Culture of Human Epidermoid Carcinoma Cells, Biomaterials, Vol. 22, PP.1943-1951 (2001)
76. Osamu Harada et al., Collagen-based New Biomedical Films:Synthesis Property and Cell Adhesion, Journal of Applied Polymer Science, Vol. 81, PP.2433-2438 (2001)
77. Man Woo Huh et al., Surface Characterization and Antibacterial Activity of Chitosan-Grafted Poly(ethylene terephthalate) Prepared by Plasma Glow Discharge, Journal of Applied Polymer Science, Vol. 81, PP.2769-2778 (2001)
78. Y.C. Tyan, J. D. Liao, C. C. Weng , Assessment and Characterization of Degradation.ect for the Varied Degrees of Ultra-violet Radiation onto theCollagen-bonded Bolypropylene Non-woven fabric Surfaces, Biomaterials,Vol. 23, 65-76, 2002.
79. Bhuvanesh Gupta et al., Thermal Crosslinking of Collagen Immobilized on Poly(acrylic acid) Grafted Poly(ethylene terephthalate) Films, Journal of Applied Polymer Science, Vol. 85, PP.1874-1880 (2002)
80. Masayuki Ishihara et al., Photocrosslinkable Chitosan as a Dressing for Wound Occlusion and Accelerator in Healing Process, Biomaterials, Vol. 23, PP.833-840 (2002)
81. Hua Zhang, Steven H. Neau, In Vitro Degradation of Chitosan by Bacterial Enzymes From Rat Cecal and Colonic Contents, Biomaterials, Vol. 23, PP.2761-2766 (2002)
82. 田育彰,固定生醫單體之生物活性與結構穩定性之探討,私立中原大學醫學工程學系播博士學位論文 (2003)
83. 李宗星、王權泉,聚丙烯不織布經乙烯基單體接枝與膠原蛋白及幾丁聚醣交聯固定其生物相容性及物化性之影響,中國文化大學材料科學與製造研究所碩士論文 (2003)
84. J.M.Yang et al., Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven fabric for wound dressing, Journal of Membrane Science, Vol. 243, PP.1-7 (2004)
85. K.S.Chen et al.,Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface, Materials Science and Engineering, Vol. 25, PP.472-478 (2005)
86. 蔡雅淇、蘇慶華,以匍枝根黴菌液態培養菌膜做為傷口癒合生醫敷料之探討,台北醫學大學醫學材料研究所碩士學位論文 (2005)
87. 林士凱、蘇慶華,利用匍枝根黴菌細胞壁組成結合血小板作為創傷敷材之探討,台北醫學大學醫學材料研究所碩士學位論文 (2006)
88. 劉有台,聚丙烯不織布電漿表面改質及其在生物載體之應用,國立台北科技大學有機高分子研究所碩士學位論文,PP.1-9,PP.25-29,PP.72 (2001)
89. Hoffman, A. S., Adsorpotion and Immobilization of Proteins on Gas Discharge-treated Surfaces, Journal of Applied Polymer Science: Applied Polymer Symposium, Vol. 46, P341-359 (1990)
90. 陳朝澧、蘇慶華,SACCHACHITIN P10對於寵物外傷及燙傷之傷口癒合作用,台北醫學大學生物醫學材料研究所碩士學位論文,P4-9(2005)
91. Steven R. Beanes, Catherine Dang, Chia Soo and Kang Ting, Skin repair and scar formation: the central role of TGF-b, Exp. Rev. Mol. Med. Vol. 5, DOI: 10.1017/S1462399403005817(2003)
92. Rydon, H. N.: Polypeptides. Part Ⅹ. The optical rotary disperkorn of poly γ –D-glutamic acid. J. Chem. Soc. P1328-1333(1964)
93. Pefferkorn E., A. Schmitt, R. Varogui, Helix-coil transition of poly (α,L-glutamic acid) at an interface: correlation with static and dynamic membrane properties. Biopolymers 21, P1451(1982)
94. Zanuy, D., C. Aleman, S. Munoz-Guerra, On the helical conformation of un-ionized poly (γ-glutamic acid). Int. J. Biol. Macromol. Vol. 23, P. 175-184 (1998)
95. 劉有台,聚丙烯不織布電漿表面改質及其在生物載體之應用,國立台北科技大學有機高分子研究所碩士學位論文,P1-9,P25-29,P72 (2001)
96. Hoffman, A. S., Adsorpotion and Immobilization of Proteins on Gas Discharge-treated Surfaces, Journal of Applied Polymer Science: Applied Polymer Symposium, Vol. 46, P341-359 (1990)
97. F. Sundardi, Graft Copolymerization of Hydrophilic Monomers onto Irradiated Polypropylene Fibers, Journal of Applied Polymer Science, Vol. 22, P3163-3176 (1978)
98. A. K. Mukherjee, B. D. Gupta, Radiation Induced Graft Copolymerization of Methacrylic Acid onto Polypropylene Fibers. Ι. Effect of Synthesis Conditions, Journal of Applied Polymer Science, Vol. 30, P2643-2653 (1985)
99. A. Hebeish, S. E. Shalaby, A. M. Bayazeed, Graft Polymerization of Methyl Methacrylate on Polyethylene Terephthalate Fibers Using H2O2 Initiator, Journal of Applied Polymer Science, Vol. 26, P3253-3269 (1981)
100. A. K. Mukherjee, B. D. Gupta, Radiation Induced Graft Copolymerization of Methacrylic Acid onto Polypropylene Fibers. Ⅱ. Effect of Solvents, Journal of Applied Polymer Science, Vol. 30, P2655-2661 (1985)
101. A. K. Mukherjee, B. D. Gupta, Radiation Induced Graft Copolymerization of Methacrylic Acid onto Polypropylene Fibers. Ⅲ. Characterization, Journal of Applied Polymer Science, Vol. 30, P2253-2262 (1985)
102. A. K. Mukherjee, B. D. Gupta, Radiation Induced Graft Copolymerization of Methacrylic Acid onto Polypropylene Fibers. Ⅳ. Dyeing Behavior, Journal of Applied Polymer Science, Vol. 30, P4455-4466 (1985)
103. N. Inagaki, S. Tasaka, M. Imai, Hydrophilic Surface Modification of Polypropylene Films by CCl4 Plasma, Journal of Applied Polymer Science, Vol. 48, P1963-1972 (1993)
104. 莊和達 編譯,聚合反應原理,復文書局,台南,中華民國,P233-251 (1989)
105. 陳博洋、王權泉,聚丙烯纖維經乙烯基單體接枝改質之研究,中國文化大學材料科學與製造研究所碩士學位論文,P1-10,P13-17,P60 (2001)
106. Clark R. A. F. Wound repair, overview and general consideration. In Clark R. A. F. (ed) The Molecular and Cellular Biology of Wound Repair, 2nd edn., London: Plenum Press, P3-50(1996)
107. Riches, D.W.H. Macrophage involvement in wound repair, remodeling and fibrosis. In Clark, R.A.F. (ed). The Molecular and Cellular Biology of Wound Repair,2nd edn. London : Plenum Press. P95-141(1996)
108. S.E. Noorjahan, T.P. Sastry, An In Vivo Study of Hydrogels Based on Physiologically ClottedFibrin–Gelatin Composites as Wound-Dressing Materials, Journal of biomedical materials research part B:Applied biomaterials. Vol 71B, P305-312(2004)
109. Tadashi Hashimoto, Yoshihisa Suzuki, Masao Tanihara, Yoshimi Kakimaru, Kyoko Suzuki, Development of alginate wound dressings linked with hybrid peptidesderived from laminin and elastin, Biomaterials 25, P1407-1414(2004)
110. Matthew D. Phaneuf, Martin J. Bide, Susan L. Hannel, Michael J. Platek, Thomas S. Monahan,Mauricio A. Contreras, Tina M. Phaneuf, Frank W. LoGerfo, Development of an infection-resistant, bioactive wounddressing surface, Journal of biomedical materials research part A, P666-676(2005)
111. Biji Balakrishnana, M. Mohantyb, P.R. Umashankarc, A. Jayakrishnana, Evaluation of an in situ forming hydrogel wound dressingbased on oxidized alginate and gelatin, Biomaterials26, P6335-6342(2005)
112. Prathiba and P. D. Gupta, Cutaneous wound healing: Significance of proteoglycans in scar formationV, Current Science, Vol. 78, No. 6(2000)
113. Hahk-Soo Kang, Se-Hoon Park, Young-Gi Lee, Tae-Il Son, Polyelectrolyte Complex Hydrogel Composed of Chitosanand Poly(g-Glutamic Acid) for Biological Application:Preparation, Physical Properties, and Cytocompatibility, Journal of Applied Polymer Science, Vol.103, P386-394(2007)
114. Wen-Fu Lee, Ying-Jou Chen, Studies on Preparation and Swelling Properties of the N-isopropylacrylamide/Chitosan Semi-IPN and IPN Hydrogels, Journal of Applied Polymer Science, Vol. 82, P2487-2496 (2001)
115. 張文祥,新型傷口敷料的研發與其體外及體內實驗的評估,國立中央大學化學工程研究所碩士論文,P1-4,P48 (1996)
116. 阮勝威、蘇慶華,由靈芝子實體經萃取後之廢渣所製成之薄膜對於大鼠傷口及組織纖維母細胞之影響,台北醫學院醫學研究所碩士論文, PP.8-10,PP.16-25 (1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周淑卿(2005)。課程的美學探究範疇之建構:當前的問題與未來的方向。課程與教學。8卷2期。1—14。
2. 何三本(2003)。九年一貫國語文課程及教材之研究。東師語文學刊第十三期。
3. 陳順和(1994)。中華民國、日本、大陸、韓國、新加坡、香港小學語文教科書之比較研究—以小學六年級教科書為例。國教輔導33-5。7-27。
4. 陳美如(1999)。多元文化課程理念與實踐之研究。國立臺灣師範大學教育研究所博士論文。未出版。
5. 陳伯璋(2005)。從課程改革省思課程研究典範的新取向。當代教育研究。13卷1期。1-33。
6. 張振成(2005)。如何建構及落實新世紀道德教育。師說184期。19—23。
7. 魏曼伊(2000)。大陸小學語文教科書之政治意識型態分析研究。國立屏東師範學院國民教育研究所碩士論文。未出版。
8. 2. 陳永琇、徐善慧,傷口敷料與幾丁聚醣,化工,第53卷第1期,P21-28(2006)
9. 4. 蘇遠志,聚麸胺酸(γ-PGA)之發酵生產與應用,生物產業,Vol.14 No.3,P.31-38(2003)
10. 5. 何觀輝,聚麸胺酸鹽水膠(γ-Polyglutamate Hygrogels)之功能特性,化工資訊與商情,第35期,P.54-60(2006)
11. 7. 何觀輝,聚麸胺酸水膠及其工業應用,生物產業,Vol.16 No.4,P.313-321(2005)
12. 9. 何觀輝,聚麸胺酸之結構特性與工業應用,生物產業,Vol.16 No3,P.172-182(2005)
13. 11. 何觀輝,聚麸胺酸之結構特性與化學特性,化工資訊與商情,第31期,P.64-71(2006)
14. 15. 陳永琇、徐善慧,傷口敷料與幾丁聚醣,化工,第53 卷第1 期,P21-28(2006)