跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉志呈
研究生(外文):Liou Jr Cheng
論文名稱:桃園觀音近岸溶解性Ba2+濃度分布
論文名稱(外文):The dissolved barium concentrations distributed in the Tao Yuan Guan Yin coastal ocean
指導教授:陳永祺
指導教授(外文):Chen Yang Chi
學位類別:碩士
校院名稱:中國文化大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:57
中文關鍵詞:地下水湧入溶解性鋇濃度沿岸海水冠狀醚
外文關鍵詞:DC18C6dissolved barium concentrationscoastal water
相關次數:
  • 被引用被引用:1
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
應用2003年10月和11月採取桃園觀音近岸不同深度的海水樣品,利用本研究室發展出測定冠狀醚(DC16C6)螯合Ba2+的液相-液相萃取方法測定海水溶解性Ba2+濃度,以觀音近岸海水中的溶解性Ba2+濃度分布情形,溶解性Ba2+濃度最高濃度92.1ppb,而鹽度最低為30.47psu,說明桃園觀音20公尺水深以內近岸有海底地下水湧入,且富含營養鹽的海底地下水(陳,2003)可能會對沿岸生態有影響。利用DC18C6螯合Ba2+金屬液相-液相萃取特性,萃取Ba2+金屬在回收率並無達到良好預期效果,因此需要再進一步以不同的萃取方法,亦或利用不同的有機溶劑、反萃取酸的選擇,都是未來可以發展一套更完整且精確的萃取檢測方法,實際應用在沿岸海水樣品的分析,為實驗室提供更簡易的方法檢測分析海水樣品。
The Guan Yin coastal sea water samples were collected from different depths for each sampling station in the Tao Yuan County on October and November, 2003. The dissolved Ba2+ of the coastal water samples was extracted by crown ether (DC18C6) and dicholoromethane and deployed graphite furnace atomic absorption spectrophotometer (Hitachi Z-2000) to measure it. From distribution contours of the dissolved Ba2+ concentrations of coastal sea water, the maximum dissolved Ba2+ concentrations was 92.1ppb,and the minimum salinity was 30.47psu at 20 meters depth in the bottom of the coast. It is inferred that there is inflow of the submarine ground water to the coastal area in the Tao Yuan Guan yin. This result is consistent with the prediction of 2003 survey by our laboratory.
第一章 地下水輸入海洋--------------------------------------------------1
1-1海底地下水對沿岸生態影響-----------------------------------------1
1-2海底地下水輸入海洋混合作用--------------------------------------2
1-3觀音海域調查報告-----------------------------------------------------3
1-4冠狀醚的介紹-----------------------------------------------------------4
1-5冠狀醚的選擇-----------------------------------------------------------7
第二章 原子吸收光譜儀與分離萃取技術----------------------------10
2-1 簡介---------------------------------------------------------------------10
2-2 分析原理---------------------------------------------------------------11
2-3石墨式原子吸收光譜儀----------------------------------------------12
2-4 干擾問題---------------------------------------------------------------15
2-5偏極化芮曼效應校正系統------------------------------------------17
2-6 基質干擾的消除-----------------------------------------------------18
2-7石墨爐溫度和時間程式的調整------------------------------------19
2-8分離技術--------------------------------------------------------------20
2-9萃取--------------------------------------------------------------------21
第三章 實驗流程--------------------------------------------------------23
3-1實驗器材--------------------------------------------------------------23
3-2 實驗藥品-------------------------------------------------------------23
3-3 海水樣品-------------------------------------------------------------24
3-4 實驗步驟-------------------------------------------------------------27
第四章 結果與討論-----------------------------------------------------30
4-1桃園觀音海域近岸海水溶解性Ba2+濃度與鹽度-------------30
4-2溶解性Ba2+濃度分布剖面圖結果討論-------------------------40
4-3 鹽度與Ba2+濃度關係圖探討------------------------------------50
4-4 DC18C6 / Dichloromethane 溶劑萃取系統測定1643d中Ba2+離子
-----------------------------------------------------------------------------53
第五章結論--------------------------------------------------------------54
第六章參考文獻--------------------------------------------------------55





圖表目錄
第一章
圖1. 地下水與海水交換作用--------------------------------------2
圖2. 地下水輸入海洋------------------------------------------------3
圖3. 主客化學結合形式---------------------------------------------5
圖4.各種冠狀醚結構式----------------------------------------------6
表一.金屬離子半徑--------------------------------------------------8
表二.冠狀醚孔洞半徑-----------------------------------------------8
表三.金屬離子穩定常數值-----------------------------------------9
第二章
圖5. 石墨式原子吸收光譜儀-------------------------------------14
圖6.萃取的基本流程-----------------------------------------------22
第三章
圖7.觀音海域採樣點-----------------------------------------------23
表四.桃園觀音海域各採樣站經緯度表---------------26
圖8. 萃取溶解性Ba2+實驗流程圖------------------------------28
表五.石墨爐原子吸收光譜儀檢測Ba2+的操作條件----------29
第四章
表六.十月份各標點表層Ba2+濃度表----------------------------32
表七.十月份各標點中層Ba2+濃度表----------------------------32
表八.十月份各標點底層Ba2+濃度表----------------------------33
表九.十一月各標點表層Ba2+濃度圖----------------------------34
表十.十一月各標點中層Ba2+濃度-------------------------------34
表十一.十一月各標點底層Ba2+濃度表-------------------------35
表十二.十月各標點表層鹽度表----------------------------------36
表十三.十月各標點底層鹽度表----------------------------------36
表十四.十一月各標點表層鹽度表-------------------------------37
表十五.十一月各標點底層鹽度表-------------------------------37
圖9.十月海水鹽度分布剖面圖----------------------------------38
圖10. 十月海水鹽度分布剖面圖--------------------------------39
圖11.採樣點:1、 5、 9、 13十月Ba2+濃度分布剖面圖-------------41
圖12.採樣點:1、 5 、9、 13十一月Ba2+濃度分布剖面圖---------42
圖13.採樣點: 2 、6、 10、 14十月Ba2+濃度分布剖面圖-----------43
圖14.採樣點: 2 、6、 10、 14十一月Ba2+濃度分布剖面圖--------------44
圖15.採樣點: 3 、7、 11、 15十月Ba2+濃度分布剖面圖------------45
圖16.採樣點: 3 、7、 11、 15十一月Ba2+濃度分布剖面圖--------46
圖17.採樣點: 4、 8、 12、 16十月Ba2+濃度分布剖面圖-----------------47
圖18.採樣點: 4、 8、 12、 16十一月Ba2+濃度分布剖面圖--------------48
圖19.十月桃園觀音海域溶解性Ba2+濃度分布圖-----------------------49
圖20.十一月桃園觀音海域溶解性Ba2+濃度分布圖--------------------49
圖21. Savannah River鹽度與Ba濃度關係圖---------------------------50
圖22.觀音海域10月表層鹽度與Ba濃度關係圖----------------------51
圖23.觀音海域10月底層鹽度與Ba濃度關係圖----------------------51
圖24.觀音海域11月表層鹽度與Ba濃度關係圖----------------------52
圖25.觀音海域11月底層鹽度與Ba濃度關係圖----------------------52
表十五. 1643d稀釋20倍萃取後測定Ba2+含量及精密度表---------53
Brown, S. D., 1977, Zeeman effect-based background correction in atomic absoption spectrometry, Anal. Chem., Vol. 49, No. 14, pp 1269A-1281A

Chen, J. C. and S. C. Pai, 1985, Direct salt-matrix correction method for quick monitoring of trace metal pollution in seawater using atomic absorption spectrometry, J. Fish. Soc. Taiwan, Vol.12, No.1, pp 44-54.

Coffey M., Dehairs F., Collette O., Luther G., Church T., and Jickells T. (1997) The behavior of dissolved barium in estuaries. Estuar. Coast. Shelf Sci. 45, 113–121.

Hallidy, M. C. and C. Moughton, 1980, Direct determination of lead in pollution spectrometry, Anal. Chem. Acta, 119, pp 67-74.

Hydes, D. J., 1980, Reduction of matrix effects with a souble organic acid in the carbon furnace atomic absorption spectrometric determination of cobalt, copper and manganese in seawater, Anal. Chem., 52, pp 959-963.

Kikuchi, Y.; Sakamoto, Y, 2000, Complex formation of alkali metal ions with 18-crown-6 and its derivatives in 1,2-dichloroethane, Anal. Chem. Acta, 403, pp. 325-332

Lundern, G., L. Lundmark and G. Johansson, 1974, Temperature controlled heating of the graphite tube atomizer in flameless atomic absorption spectrometry, Anal. Chem., Vol. 46, No. 8, pp 1028-1031

Little John, D., I. Duncan, J. Marshall and J. M. Ottaway, 1984, Analytical evaluation of totally pyrolytic graphite cuvettes for electrothermal atomic absorption spectrometry, Anal. Chem. Acta., 157, pp 291-302

Leyden, D. E., K. Goldbach and A. T. Ellis, 1985, Preconcentration and X-ray spectrometric determination of arsenic(III)and chromium(III)in water, Anal. Chem. Acta, 171, pp 369-374

Lee, V., & Olsen, S. (1985). Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries, 8(2B), 191-202.

Moore W. S. (1997) High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source. Earth Planet. Sci. Lett. 150, 141–150.

Moore, W.S., 1999, The subterranean estuary: a reaction zone of ground water and sea water, Marine Chemistry, 65, pp. 111-125.

Norval, E., H. G. C. Humam and L. R. P. Butler, 1979, Carbide coating process for graphite tubes in electrothermal atomic absorption spectrometry, Anal. Chem., Vol. 51, No. 12, pp 2045-2048

Pruszkowska, E., G. R. Carnrick and W. Slavin, 1983, Direct determination of cadmium in coastal seawater by atomic absorption spectrometry with the stabilized temperature platform furnace and Zeeman background correction, Anal. Chem., 55, pp 182-186

Sturgeon, R. E., S. S. Berman, A. Desaulnies, and D. S. Russell, 1979, Determination of iron, manganese, and zinc in seawater by graphite furnace atomic absorption spectrometry, Anal. Chem., Vol. 51, No. 14, pp 2364-2369.




Shaw, J.J., Gieskes, J.M. and R.A., Jahnke, 1990, Early diagenesis in differing depositional environments: The response of transition metals inpore water, Geochimica et Cosmochimica cta, 55, pp. 1233-1246.

Timothy J. Shaw, Willard S. Moore, Jeremi Ah Kloepfer, And Mark A. Sochaski,1998, The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge, Geochimica et Cosmochimica Acta, Vol. 62, No. 18, pp. 3047–3054

Simmons G. M. Jr. (1992) Importance of submarine groundwater
discharge (SGWD) and seawater cycling to material flux across
sediment/water interfaces in marine environments. Mar. Ecol. Prog. Ser. 84, pp.173–184

Turekain, K.K., 1977, The fate of metals in the oceans, Geochimica et Cosmochimica Acta, 41, pp.1139-1144.

陳永祺,2003,桃園科技工業區海域水質及底泥調查,文化大學化學系,80p.

林進源,2002,台灣西北部小河川溶解性眾金屬流向海洋的特性,碩士論文,文化大學應化所,95p.

余建中,2002,環境水質(北區)採樣監測計畫,EPA-91-G102-03-203,374p.

郭彥智,2006,應用冠狀醚(DC18C6)測定水中溶解性Ba2+濃度,碩士論文,文化大學應化所,65p.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top