跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家賦
研究生(外文):Chia Fu Lin
論文名稱:鍵結有Calix[4]arene之矽膠的合成及1,3-diethoxycalix[4]diquinone的動力研究
論文名稱(外文):The study in the preparation of the Calix[4]arene grafted silica gel and Kinetic study of the 1,3-diethoxycalix[4]diquinone
指導教授:林立錦
學位類別:碩士
校院名稱:中國文化大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:矽膠熱重分析火焰原子吸收光譜動力學組態轉換
外文關鍵詞:Calixarenesgrafted silica gelTGAAAkinetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Calixarenes,為一種酚和甲醛的環狀聚合物,因為其具有分子內中空,故可以嵌合一些小型的有機分子或金屬離子,而形成 “主-客化合物”,而這一種特性應可推廣應用於微量檢驗,離子分離及酵素模擬的研究,而本論文主要的目的主要分為兩部份;其中一個是將 calix[4]arene 鍵結於矽膠上,以製備出 calix[4]arene grafted silica gel,然後再進一步的研究其對金屬離子的選擇性,並期望能發展出進行金屬離子分離的矽膠產物。本論文的另一個目的則在利用1H-NMR的光譜,來測定 1,3- diethoxycalix[4]diquinones 的 anti-28 組態與 syn-29 組態,在 CDCl3 與 C5D5N 兩者不同比例混合的溶劑中之轉換常數 k1值。
p-tert-Butylphenol 和甲醛在鹼催化下,可聚合成黃綠色之聚合前驅物 26,此一聚合前驅物於二苯醚 (diphenyl ether) 中迴流,可被轉換成 p-tert-butylcalix[4]arene (1);而此環狀聚合物上的對位三級丁基可利用三氯化鋁 (AlCl3) 作為催化劑,以反向的 Friedel-Crafts 反應移除,而得到對位無取代之 calix[4]arene (6)
一個標準的四步驟製程,能將calix[4]arene鍵結到矽膠上。利用 3-aminopropyl triethoxy silane 可將 3-aminopropyl 的官能基鍵結到矽膠上,而得到化合物 aminopropyl silica gel (APSG);APSG 可和 p-nitrobenzoyl chloride 作用,而引進硝基苯官能團;接著硝基苯官能團可用 sodium dithionite 來進行還原,而生成苯胺官能團;最後再利用偶氮偶合反應和 calix[4]arene 作用,便得到紅色的 calix[4]arene grafted silica gel 化合物。製備出 calix[4]arene grafted silica gel 後再使用熱重分析儀和火焰原子吸收光譜來進行相關之分析。
而雙乙基醚化之 calix[4]arene 在利用 ClO2 進行氧化時,可得到在室溫下可相互轉換的兩種組態異構物anti-diethoxycalix[4]diquinonee 和 syn-diethoxycalix[4]diquinon。本論文將利用1H-NMR的光譜測量,來估算轉換過程中anti-28組態與 syn-29 組態的百分比,並利用動力學一級反應的公式計算出在混合溶劑中(CDCl3: C5D5N=1:0、3:1、1:1、1:3、0:1)組態轉換的常數值,並由數據來判斷 1,3-diethoxycalix[4]diquinone 對於溶劑是否有選擇性。
Calixarenes, which are cyclic oligomers of p-substituted phenols and formaldehyde, are able to include small organic molecules or metal ions within the molecular cavities to from “host-guest complexes”. This phenomenon has been proposed in the research area of micro-analysis detection devices, ion separation, and enzyme-mimic studies. Two research subjects will be discusses in this thesis, the first one is to develop a standard procedure for preparation of calix[4]arene grafted silica gel and its application. The second subject is to study the kinetic interconvesion rate between two conformational isomers of 1,3-diethoxycalix[4]diquinone in various mixed solvent systems.
In the presence of a base, p-tert-butylphenol and formaldehyde was polymerized to form a yellowish precursor. Refluxing of this precursor in diphenyl ether afforded the p-tert-butylcalix[4]arene. The p-tert-butyl groups were then removed by AlCl3-catalyzed reverse Friedel-Crafts reaction to give the parent calix[4]arene.
A standard four-step procedure was able to graft calix[4]arene onto the silica gel. An 3-aminopropyl groups was introduced by reacting triethoxy silane with silica gel, and the resulting aminopropyl silica gel (APSG) was further treated with p-nitrobenzoyl chloride to supply a p-nitrobenzoate moiety. The nitro group was then reduced by sodium dithionite, and the diazotization of the resulting aniline followed with diazo-coupling with calix[4]arene gave the red calix[4]arene grafted silica gel.
The thermal gravimetric analysis (TGA) was applied to the products to determine the composition of the organic portion on grafted silica gel. The amount of the organic portion was in the range of 24.49% for the calix[4]arene grafted silica gel, which is equivalent to 4.00 mmole of calix[4]arene per gram of calix[4]arene grafted silica gel . The preliminary ionic extraction resulted for Cu+2 , Fe+2 , Pb+2 , and Cr+3 will also be discussed.
The ClO2 oxidation of diethoxycalix[4]arene yielded the corresponding diethoxycalix[4]diquinones in anti-28 and syn-29 conformers. The 1H-NMR was applied to measure the kinetic conversion rate between anti-28 and syn-29 in various CDCl3-C5D5N mixed solvent systems. The preliminary result indicated that the conversion rate was linear correlation to the composition of the solvents.
摘要 ………………………………………… I

Abstract ………………………………… III

目錄…………………………………………… V

圖目錄 ……………………………………… VIII

流程目錄……………………………………… XIII

表目錄 ……………………………………………XV

第一章 Calixarenes 的簡介
1-1 Calixarenes 的歷史 ……………………………………… 2
1-2 Calixarenes 的命名 ……………………………………… 5
第二章 Calixarenes 的合成
2-1 一步合成法…………………………………………………… 7
2-2 多步合成法…………………………………………………… 10
2-3 官能基化法 ……………………………………………… 15
第三章 Calixarenes 的應用
3-1 Calixarenes的組構異構物……………………………… 21
3-2 Calixarenes的應用…………………………………… 26
第四章 Calix[4]arene相關衍生物的製備
4-1 Calix[4]arene 的製備 ……………………………… 46
4-2 Calix[4]arene grafted silica gel 的製備……………… 48
4-3 1,3-Diethoxycalix[4]arene 的合成……………………… 50
4-4 1,3-Diethoxycalix[4]diquinones 的合成……………… 51
第五章 Calix[4]arene grafted silica gel 的分析
5-1 Calix[4]arene grafted silica gel 的 TGA 分析……… 52
5-2 Calix[4]arene grafted silica gel 與
金屬離子做鍵結吸附的 AA 分析……………………… 54
第六章 1,3-Diethoxycalix[4]diquinone
組態異構物轉換的動力研究
6-1 1,3-Diethoxycalix[4]diquinone 的動力研究………58
6-2 First Order動力學公式的推導………………………59
6-3-1 anti-1,3-Diethoxycalix[4]diquinone
in CDCl3的測量…………………………………59

6-3-2 anti-1,3-Diethoxycalix[4]diquinone
in C5D5N的測量……………………………………63
6-3-3 anti-1,3-Diethoxycalix[4]diquinone in
CDCl3:C5D5N=3:1的測量…………………………65
6-3-4 anti-1,3-Diethoxycalix[4]diquinone in
CDCl3:C5D5N=1:1的測量…………………………68
6-3-5 anti-1,3-Diethoxycalix[4]diquinone in
CDCl3:C5D5N=1:3的測量…………………………71
6-4 1,3-Diethyloxycalix[4]diquinone 的翻轉速率
與混合溶液比例間的關係…………………………74


結論……………………………………………………………… 75

實驗步驟 ………………………………………………………… 77

參考資料 ………………………………………………………… 87

NMR光譜圖、TGA 分析圖、AA 分析數據……………………… 95
1. Baeyer, A., Ber. Dtsch. Chem. Ges., 1872, 280.

2. Baekeland, L. H., Indust. Eng. Chem., 1913, 5, 506.

3. Zinke, A.; Kretz, R.; Leggewie, E.; Hossinger, K., Monatsh. Chem., 1952, 83, 1213

4. Cornforth, J. W.; Hart, P. D.; Nicholls, G. A.; Rees, R. J. W.; Stock, J. A., Brit. J. Pharmacol., 1955, 10, 73.

5. Kammerer, H.; Happel, G.; Caesar, F., Makromol. Chem., 1972, 162, 179.

6. Munch, J. H., Makromol. Chem., 1977, 178, 69.

7. Gutsche, C. D.; Muthukrishnan, R., J. Org. Chem., 1978, 43, 4905.

8. Andreetti, G. D.; Ungaro, R.; Pochini, A., J. Chem. Soc. Chem. Commun., 1979, 1005.

9. Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T.; Manabe, O., Tetrahedron Lett., 1984, 25, 5315.

10. (a) Zinke, A.; Ziegler, E., Ber. Chem., 1941, 74, 1729. (b) Zinke, A.; Ziegler, E., Ber. Chem., 1944, 77B, 264. (c) Zinke, A.; Zigeuner, G.; Hossinger, K.; Hoffman, G., Monatsh. Chem., 1948, 79, 438. (d) Zinke, A.; Ott, R.; Garrana, H., Monatsh. Chem., 1958, 89, . (e) Zinke, A., J. Appli. Chem., 1951, 1, 135.

11. Patrick, T. B.; Egan, P.A., J. Org. Chem., 1977, 42, 382.

12. Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R., J. Am. Chem. Soc., 1981, 103, 3782.

13. Gutsche, C. D.; Iqbal, M., Org. Synth., 1989, 68, 234.

14. Ninagawa, A.; Matsuda, H., Makromol. Chem. Rapid Comm., 1982, 3, 65.

15. Nakamoto, Y.; Ishida, S., Makromol. Chem. Rapid Comm., 1982, 3, 705.

16. (a) Hayes, B. T.; Hunter, R. F., Chem. Ind., 1956, 193. (b) Hayes, B. T.; Hunter, R. F., J. Applied Chem., 1958, 8, 743.

17. (a) Happel, G.; Mathiasch, B.; Kammerer, H., Makromol. Chem., 1975, 176, 3317. (b) Kammerer, H.; Happel, G., Makromol. Chem., 1978, 179, 1199. (c) Kammerer, H., Monatsh. Chem., 1981, 112, 759.

18. Bohmer, V.; Chhim, P.; Kammerer, H., Makromol. Chem., 1979, 180, 2503.

19. (a) Hakimelahi, G. H.; Moshfegh, A. A., Helv. Chim. Acta, 1981, 64, 599. (b) Moshfegh, A. A.; Mazandarani, B.; Nahid, A.; Hakimelahi, G. H., Helv. Chim. Acta, 1982, 65, 1229. (c) Moshfegh, A. A.; Baladi, E.; Radnia, L.; Afsanch, S. L.; Hosseini, A. S.; Tofigh, S.; Hakimelahi, G. H., Helv. Chim. Acta, 1982, 65, 1264.

20. No, K. H.; Gutsche, C. D., J. Org. Chem., 1982, 47, 2713.

21. Gutsche, C. D.; Alam, I., Tetrahedron, 1988, 44, 4689.

22. Gutsche, C. D.; Levine, J. A., J. Am. Chem. Soc., 1982, 104, 2652.

23. Bohmer, V.; Rathay, D.; Kammerer, H., Org. Prep. Proc. Int., 1978, 10, 113.

24. (a) Shinkai, S.; Tsubaki, T.; Sone, T.; Manabe, O., Tetrahedron Lett., 1985, 26, 3343. (b) Shinkai, S.; Araki, K.; Tsubaki, T.; Arimur, T.; Manabe, O., J. Chem. Soc. Perkin Trans. 1, 1987, 2297. (c) Arimur, T.; Shinkai, S.; Matsuda, T.; Hirata, Y.; Satoh, H.; Manabe, O., Bull. Chem. Soc. Jpn., 1988, 61, 3733. (d) Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H., J. Chem. Soc. Perkin Trans. 1, 1989, 2039. (e) Arimura, T.; Nagasaki, T.; Shinkai, S.; Matsuda, T., J. Org. Chem., 1989, 54, 3766.

25. Rosik, L. O., Ph. D. Thesis, Washington University, St. Louis, 1986, 29.

26. Gutsche, C. D.; Pagoria, P. F., J. Org. Chem., 1985, 50, 5795.

27. Gutsche, C. D.; Reddy, P. A., J. Org. Chem., 1993, 58, 3245.

28. (a) Helgeson, R. C.; Mazaleyrat, J. P.; Cram, D. J., J. Am. Chem. Soc., 1981, 103, 3929. (b) Moran, J. R.; Karbach, S.; Cram, D. J., J. Am. Chem.Soc., 1982, 104, 5826. (c) Cram, D. J., Science, 1983, 219, 1177.

29. Gutsche, C. D.; Dhawan, B.; Levine, J. A.; No, K. H.; Bauer, L,. J, Tetrahedron, 1983, 39, 409.

30. Bocchi, V.; Foina, D.; Pochini, A.; Ungaro, R., Tetrahedron, 1982, 38, 373.

31. Cram D. J.; Cram, J. M., Science., 1974, 183, 803.

32. Bauer, L. J.; Gutsche, C. D., J. Am. Chem. Soc., 1987, 107, 6063.

33. Shinkai, S., J. Incl. Phenom., 1989, 7, 193.

34. Gutsche, C. D.; Alam, I.; Iqbal, M.; Mangiafico, T.; Nam, K. C.; Rogers, J.; See, K. A., J. Incl. Phenom., 1989, 7, 61.


35. Molenveld, P.; Emgbersen, J. F. C.; Kooijman, H.; Spek, A. L.;
Reinhoudt,D. N., J. Am. Chem. Soc., 1998, 120, 6726.

36. Izatt, R. M.; Lamb, J. D.; Hawkins, R. T.; Brown, P. R.; Izatt, S. R.; Christensen, J. J., J. Am. Chem. Soc., 1983, 105, 1782

37. Zhen-lin Zhong; Yuan-yin Chen; Xue-ran Lu, Tetrahedron Lett., 1995, 36, 6735.

38. Benco,J. S.; Nienabar, H. A.; Dennen, K.; McGimpsey, W. G.,Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152, 33.

39. Rocco Ungaro; Alessandro Casnati; Franco Ugozzol; Andrea Pochini; Jean-Francois Dozol; Clement Hill; Helene Rouquette, Angew Chem Int Engl, 1994, 32, 1506

40. Alessandro C.; Andrea P.; Rocco U.; Franco U.; Francoise A.; Stefano F.; Marie-Jose S.; Richard J. M. Egberink; Feike de J.; David N. R.; J. Am. Chem. Soc. 1995, 117, 2767

41. Nomura, E.; Taniguchi, H.; Tamura, S., Chem. Lett., 1989, 1125.

42. Shimizu, H.; Iwamoto, K; Fujimoto, K; Shinkai, S., Chem. Lett, 1991, 2147.

43. Kim, N. Y.; Chang, S.-K., J. Org. Chem, 1998, 63, 2362.

44. Tao Zhao, X. Hu, J. Cheng, X. Lu, Analytica Chimica Acta, 1998, 358, 263

45. (a) Shinkai, S.; Koreishi, H.; Ueda, K.; Manabe, O., J. Chem. Soc. Chem. Commun., 1986, 233. (b) Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O., J. Am. Chem. Soc., 1987, 109, 6371. (c) Shinkai, S.; Kawaguchi, H.; Manabe, O., J. Polym. Sci. Polym. Lett., 1988, 26, 391. (d) Shinkai, S.; Shiramama, Y.; Satoh, H.; Manabe, O., J. Chem. Soc. Perkin Trans. 2, 1989, 1167.

46. Wanlapa, A.; Agnes, H.; Zouhair, A.; Leila B.; Jacques, V.; Maurice, L., Tetrahedron Lett., 1999, 40, 6389.

47. V.K. Jain, A. Handa, R. Pandya, P. Shrivastav, Y.K. Agrawal, Reactive & Functional Polymers, 2002, 51, 101

48. David M. Duncan, J.S., Cockayne, Sensors and Actuators B, 2001, 73, 228

49. Duncan, D. M.; Cockayne, J. S.,Sensors and Actuators B, 2001, 73, 228

50. J. M. Hill, Journal of Chromatography, 1973, 455

51. A. Simon; T. Cohen-Bouhacina; C. Baquery, Journal of Colloid and Interface Science, 2002, 251, 278

52. Joung Hae Lee, and Jong Seung Kim, J. Org. Chem. 2003, 68, 1933-1937

53. Lee-Gin Lin, Tetrahedron , 2006, 6082-6089
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top