(3.230.173.249) 您好!臺灣時間:2021/04/18 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱育嬋
研究生(外文):Yu-Chan Chu
論文名稱:探討綠藻抗氧化及誘導肝癌細胞凋亡之分子機制
論文名稱(外文):Studies on the antioxidant activities of Chlorella and possible apoptosis mechanism in human hepatoma cell lines (Hep G2)
指導教授:周淑姿周淑姿引用關係
指導教授(外文):Su-Tze Chou
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2007/07/
畢業學年度:95
語文別:中文
論文頁數:136
中文關鍵詞:抗氧化狀態肝損傷四氯化碳綠藻肝癌細胞轉移細胞凋亡
外文關鍵詞:liver damagehuman hepatoma cells line (Hep G2)Chlorellaapoptosiscarbon tetrachloride (CCl4)antioxidant statusmetastasis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
台灣地區十大死亡原因之首為惡性腫瘤,肝癌位居第二位,慢性肝病及肝硬化則位居第七位,因此如何預防及延緩肝臟疾病的發生為一重要研究主題。綠藻為一種單細胞藻類,富含豐富蛋白質、抗氧化維生素及礦物質等抗氧化活性物質,因此本研究目的為探討綠藻抗氧化及誘導肝癌細胞凋亡之分子機制。結果顯示綠藻之80%乙醇相萃取之商業化綠藻 (GPE) 及經物理性球磨破壁綠藻 (BME) 於體外抗氧化實驗得知GPE與BME皆具有清除α,α-diphenyl-β-picryl hydrazyl (DPPH)及2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfomic acid) (ABTS) 自由基之能力,其抗氧化效力皆隨GPE或BME添加劑量之增加而增加。細胞方面利用MTT(3-(4,5-Dimethyl-2-thiazolyl)-2,5-
diphenyltetrazolium bromide)試驗評估GPE與BME對肝癌細胞生長之影響,結果顯示GPE與BME (31.25 ~ 500 μg/ml) 之添加可抑制Hep G2細胞之生長,但兩者之間並無顯著差異,因此選用GPE進一步的探討其誘導肝癌細胞凋亡之分子機制,並利用四氯化碳誘導肝損傷以評估綠藻之體內抗氧化活性。GPE之添加會造成Hep G2細胞核皺縮與DNA損傷,經細胞流式儀得知GPE會降低粒線體膜電位及增加ROS與鈣離子的釋放。在西方墨點法得知GPE能夠降低Bcl-2及增加cytochrome c蛋白表現,且活化caspase-9、caspase-3及caspase-8蛋白表現,另外亦增加Fas、FasL蛋白表現,在MAPK家族中,GPE會降低ERK蛋白表現並增加JNK的表現,在基質金屬蛋白酶的表現方面,GPE能降低MMP-2及MMP-9之表現,另外GPE亦能抑制Hep G2細胞侵襲之能力,因此能夠抑制癌細胞的轉移。此外,GPE之添加亦會改變Hep G2細胞氧化抗氧化之恆定,降低superoxide dismutase (SOD) 活性與glutathione (GSH) 含量,並增加脂質過氧化物含量、catalase及glutathione peroxidase的活性。另外以四氯化碳誘導Sprague-Dawley大鼠氧化傷害評估GPE之抗氧化性,結果顯示,管餵GPE可降低因四氯化碳誘發AST及ALT上升之情形,且降低四氯化碳誘導肝臟中脂質過氧化物含量,增加維生素C含量與SOD及catalase之活性,並保留維生素E與GSH之含量,綜合上述,綠藻萃取物具有抑制Hep G2細胞生長、誘導細胞凋亡及抑制轉移之作用,另外GPE亦具有保護肝臟之能力以降低四氯化碳對於肝臟損害之程度。
Cancer is the major death cause in Taiwan. Recently, there is an increase interest in the study how to prevention or delay the hepatoma development. Chlorella has been reported to show antioxidant activity and anticancer functions. In this study, we will examine the antioxidant activities of Chlorella and possible apoptosis mechanim in human hepatoma cell lines (Hep G2 cells). The results demonstrated that 80% ethanolic extracts from commercial granule chlorella products (GPE) and ball milling chlorella products (BME) had α,α-diphenyl-β-picryl hydrazyl (DPPH), 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfomic acid) (ABTS) radical-scavenging activity and this activity is a dose-dependent manner. GPE and BME can decrease the percentage of viable cells in time- and dose- dependent manners. The morphology, DAPI staining, comet assay were conducted and they indicated the GPE induced Hep G2 cells apoptosis. Flow cytometry assay demonstrated that GPE induce the change of mitochondrial membrane potential, reactive oxygen species (ROS), and calcium releasing. Western blotting analysis, GPE decreased the protein expression of Bcl-2, and increased the levels of cytochrome c. Furthermore, GPE can increase the expression of caspase-9, -3, -8, and also increased the expression of Fas and FasL. In MAPK family, GPE can decrease the expression levels of ERK and increased the levels of JNK. GPE also can inhibit the invasion of Hep G2 cells by suppressing MMP-2, and MMP-9 expression. In addition, GPE decreased the superoxide dismutase activity and glutathione level, however, the GPE increased malondialdehyde, glutathione peroxidase and catalase activity in Hep G2 cells.
The in-vivo antioxidant effects of GPE on carbon tetrachloride (CCl4)-induce oxidative stress in Sprague-Dawley rats. The results showed that the GPE treatment reduced significantly the CCl4-induced increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), inhibited the CCl4-induced lipid peroxidation, increased vitamin C content, SOD and catalase activity, also keep vitamin E and GSH content in liver. Collectively, these results support that GPE can inhibit cells growth, induce apoptosis and inhibit invasiveness in Hep G2 cells. Oral administration with GPE for 28 consecutive days could significant decrease the CCl4-induced hepatic damage by increasing the activity of antioxidant enzymes. The results suggest GPE may have the anticancer potential and antioxidant activity.
目錄…………………………………………………………………………………………Ⅰ
表目錄………………………………………………………………………………………Ⅶ
圖目錄………………………………………………………………………………………Ⅷ
中文摘要…………………………………………………………………………………ⅩⅠ
英文摘要…………………………………………………………………………………ⅩⅡ
第一章 前言…………………………………………………………………………………1
第二章 文獻回顧……………………………………………………………………………3
第一節 綠藻簡介………………………………………………………………………3
第二節 肝癌簡介………………………………………………………………………6
第三節 四氯化碳誘導肝損傷之簡介…………………………………………………8
第四節 自由基與活性氧簡介…………………………………………………………9
(一) 超氧陰離子 (Superoxide anion, .O2-)………………………………………9
(二) 過氧化氫 (Hydrogen peroxide, H2O2) ………………………………………9
(三) 氫氧自由基 (Hydroxyl radical, .OH) ………………………………………9
(四) 單重態氧 (Singlet oxygen, 1O2) ……………………………………………10
第五節 抗氧化之防禦系統 …………………………………………………………11
一、酵素性抗氧化防禦系統 ……………………………………………………13
(1) 麩胱甘肽過氧化酶 (Glutathione peroxidase, GPx)………………………13
(2) 超氧歧化酶 (Superoxide dismutase, SOD) ………………………………13
(3) 觸酶 (catalase) …………………………………………………………….13
二、非酵素性抗氧化防禦系統……………………………………………………13
(1) 維生素E (α-Tocopherol) …………………………………………………..13
(2) 維生素C (Ascorbic acid) ………………………………………………….14
(3) 麩胱甘肽 (Glutathione) …………………………………………………...14
第六節 細胞週期……………………………………………………………………..15
第七節 細胞凋亡…………………………………………………………………….17
一、細胞凋亡之定義…………………………………………………………….17
二、細胞凋亡及細胞壞死……………………………………………………….17
三、Caspase family……………………………………………………………… 19
四、Bcl-2 family………………………………………………………………… 19
五、細胞凋亡之調控機轉……………………………………………………… 20
(一) Extrinsic pathway………………………………………………………… 20
(二) Intrinsic pathway…………………………………………………………. 20
(三) MAPK (Mitogen-activated protein kinase) pathway……………………...21
(四) ER stress…………………………………………………………………...21
第八節 癌細胞之轉移……………………………………………………………….23
第三章 材料與方法………………………………………………………………………..24
第一節 儀器與材料…………………………………………………………………..24
第二節 藥品…………………………………………………………………………..25
第三節 實驗架構……………………………………………………………………..29
第四節 綠藻萃取物之製備…………………………………………………………..30
第五節 綠藻體外抗氧化活性之測定………………………………………………..31
ㄧ、清除α,α-diphenyl-β-picryl hydrazyl (DPPH)自由基能力之測定…………31
二、總抗氧化力之測定………………………………………………………….32
三、總多酚類含量之測定………………………………………………………32
第六節 綠藻對肝癌細胞之影響……………………………………………………..34
ㄧ、細胞培養與保存…………………………………………………………….34
(一) 細胞培養與培養基製備………………………………………………..34
(二) 冷凍細胞活化…………………………………………………………..34
(三) 細胞冷凍保存…………………………………………………………..34
(四) 繼代培養………………………………………………………………..34
(五) 計數細胞………………………………………………………………..35
二、利用倒立式位像差顯微鏡檢測細胞之形態………………………………35
三、細胞存活率之測定 (MTT assay) …………………………………………35
四、流式細胞儀分析測定………………………………………………………37
(一) 活性氧物質產生之測定……………………………………………….37
(二) 粒線體膜電位之測定………………………………………………….38
(三) 鈣離子釋出之測定…………………………………………………….39
五、DNA損傷之測定…………………………………………………………..40
(一) DAPI螢光染色法………………………………………………………40
(二) 彗星試驗 (comt assay)………………………………………………...40
六、超氧自由基之測定 (NBT還原法分析)…………………………………..41
七、細胞轉移……………………………………………………………………42
八、西方點墨法…………………………………………………………………43
(一) 細胞總蛋白抽取……………………………………………………….43
(二) 總蛋白質含量之測定………………………………………………….43
(三) 西方墨點法 (Western boltting) ……………………………………….44
(1) 變性電泳 (SDS-PAGE) …………………………………………….44
(2) 轉漬 (Transfer) ……………………………………………………..44
(3) 阻斷 (Blocking) …………………………………………………….45
(4) 一級抗體及二級抗體反應………………………………………….45
(5) 壓片步驟 (暗房中進行) …………………………………………...46
九、細胞抗氧化物質及酵素活性之測定……………………………………...46
(一) 細胞液製備…………………………………………………………….46
(二) 測定項目……………………………………………………………….46
(a) 細胞中glutathione (GSH)含量之測定……………………………...46
(b) 細胞中SOD活性之測定……………………………………………47
(c) 細胞中GSH-Px活性之測定………………………………………..48
(d) 細胞中catalase活性之測定………………………………………..48
(e) 細胞中脂質過氧化物—丙二醛 (MDA)含量之測定……………...49
第七節 以四氯化碳誘導肝損傷評估綠藻對於動物體內抗氧化恆定之影響………51
一、原理…………………………………………………………………………51
二、動物模式建立………………………………………………………………51
(一) 動物飼料與管理……………………………………………………….51
(二) 實驗設計……………………………………………………………….51
(1) 實驗方法…………………………………………………………….51
(2) 步驟………………………………………………………………….51
(3) 測定項目…………………………………………………………….52
(a) 血清中Aspartate aminotransferase (AST)之測定……………….52
(b) 血清中Alanine aminotransferase (ALT)之測定…………………52
(c) 肝臟組織中總蛋白含量之測定………………………………….53
(d) 肝臟組織中脂質過氧化物之測定……………………………….53
(e) 肝臟組織中維生素C含量之測定……………………………….53
(f) 肝臟組織中維生素E含量之測定……………………………….54
(g) 肝臟組織中GSH含量之測定……………………………………55
(h) 肝臟組織中SOD活性之測定……………………………………56
(i) 肝臟組織中catalase活性之測定………………………………...56
(j) 肝臟組織中GSH-Px活性之測定………………………………..56
(k) 肝臟組織中Glutathione S transferase活性之測定………………56
(l) 血漿總抗氧化力之測定………………………………………….57
第八節 統計分析…………………………………………………………………..57
第四章 結果………………………………………………………………………………..58
一、評估綠藻之80%乙醇萃取物萃取物之抗氧化能力……………………………58
(一) 綠藻之80%乙醇萃取物清除DPPH自由基之效力……………………….58
(二) 綠藻之80%乙醇萃取物總抗氧化力( TEAC) ……………………………..58
(三) 綠藻之80%乙醇萃取物總多酚含量之測定……………………………….59
二、綠藻之80%乙醇萃取物對於人類肝癌細胞株 (Hep G2 cells) 細胞存活率
及其誘導細胞凋亡路徑之機制探討………………………………………… ..63
(一) 綠藻之80%乙醇萃取物對於人類肝癌細胞株 (Hep G2 cells) 存活率
之影響………………………………………………………………………..63
(二) 綠藻之80%乙醇萃取物對於人類肝癌細胞株(Hep G2 cells)細胞型態
之影響………………………………………………………………………..63
(三) 利用細胞流式儀檢測綠藻之80%乙醇萃取物 (GPE) 對於人類肝癌
細胞株 (Hep G2 cells) 活性氧物質、粒線體膜電位、鈣離子之影響…..68
(四) GPE對於人類肝癌細胞株(Hep G2 cells)超氧陰離子生成之影響………..72
(五) GPE對於人類肝癌細胞株 (Hep G2 cells) DNA損傷之影響……………..72
(六) GPE對於人類肝癌細胞株 (Hep G2 cells) 凋亡蛋白表現之影響………..76
(1) Bcl-2、cytochrome c 蛋白表現量之結果…………………………………76
(2) Caspase家族及PARP蛋白表現量之結果…………………………………76
(3) AIF蛋白表現量之結果…………………………………………………….77
(4) GRP78、GADD153及caspase 12蛋白表現量之結果……………………77
(5) Fas、Fas-L、caspase-8蛋白表現量之結果……………………………….77
(6) MAPK 家族蛋白表現量之結果…………………………………………...78
(7) 金屬基質蛋白酶 (MMPs) 家族相關蛋白表現量之結果………………..78
(七) GPE對於人類肝癌細胞株 (Hep G2 cells) 細胞侵襲之影響……………...90
(八) GPE對於人類肝癌細胞株 (Hep G2 cells) 抗氧化恆定之影響…………...90
三、綠藻之80%乙醇萃取物 (GPE) 對於CCl4誘導大鼠化學性肝損傷之保護
作用………………………………………………………………………………93
(一) GPE對於CCl4誘導大鼠肝損傷之大鼠每日增重量及食物效能之影響…93
(二) GPE對於CCl4誘導大鼠肝損傷之之肝臟外觀變化………………………93
(三) GPE對於CCl4誘導大鼠肝損傷之肝臟及腎臟器官之影響………………93
(四) GPE對於CCl4誘導大鼠肝損傷之肝功能指數 (AST、ALT)之影響……98
(五) GPE對於CCl4誘導大鼠肝損傷之肝臟中蛋白質含量之影響……………98
(六) GPE對於CCl4誘導大鼠肝損傷之肝臟中之脂質過氧化物 (MDA) 含量
之影響………………………………………………………………………..98
(七) GPE對於CCl4誘導大鼠肝損傷之肝臟中之維生素C含量之影響………99
(八) GPE對於CCl4誘導大鼠肝損傷之肝臟中之維生素E含量之影響………99
(九) GPE對於CCl4誘導大鼠肝損傷之肝臟中之GSH含量之影響……………99
(十) GPE對於CCl4誘導大鼠肝損傷之肝臟中之SOD活性之影響………….100
(十一) GPE對於CCl4誘導大鼠肝損傷之肝臟中之catalase活性之影響…….100
(十二) GPE對於CCl4誘導大鼠肝損傷之肝臟中之GSH-Px活性之影響…….100
(十三) GPE對於CCl4誘導大鼠肝損傷之肝臟中之GST活性之影響……….101
(十四) GPE對於CCl4誘導大鼠肝損傷之肝臟中之總抗氧化力之影響……...101
第五章 討論………………………………………………………………………………113
第六章 結論………………………………………………………………………………121
第七章 參考文獻…………………………………………………………………………124
表一、每100公克綠藻營養成分分析表…………………………………………………. 4
表二、GSH移動相沖提梯度 (Elution Gradient) …………………………………………47
表三、MDA移動相沖提梯度 (Elution Gradient) …………………………………………50
表四、VitE移動相沖提梯度 (Elution Gradient) …………………………………………55
表五、綠藻之80%乙醇萃取物之半數清除濃度(IC50) ……………………………………62
表六、綠藻之80%乙醇萃取物之 總多酚含量…………………………………………...62
表七、GPE之添加48小時對HepG2 cells抗氧化系統之影響…………………………92
表八、GPE對CCl4誘導大鼠肝損傷之每日增重量及食物效能之影響…………………95
表九、GPE對CCl4誘導大鼠肝損傷之肝臟及腎臟器官之影響…………………………97
圖一、GSH與抗氧化物質(維生素C、維生素E、硫辛酸)對於氧化壓力的調
節路徑………………………………………………………………………………12
圖二、細胞週期與其主要調控者…………………………………………………………15
圖三、細胞凋亡(A)與細胞壞死(B) ………………………………………………………18
圖四、Bcl-2家族蛋白………………………………………………………………………20
圖五、細胞凋亡之路徑……………………………………………………………………22
圖六、血球計數器…………………………………………………………………………35
圖七、MTT形成formazan之機制……………………………………………………….36
圖八、活性氧物質軟體分析圖……………………………………………………………37
圖九、粒線體膜電位軟體分析圖…………………………………………………………38
圖十、鈣離子軟體分析圖…………………………………………………………………39
圖十一、轉漬夾內部組成…………………………………………………………………45
圖十二、綠藻之80%乙醇萃取物對DPPH自由基之清除效力…………………………60
圖十三、綠藻之80%乙醇萃取物對ABTS自由基之清除效力…………………………61
圖十四、GPE之添加對於Hep G2 細胞存活之影響……………………………………64
圖十五、BME之添加對於Hep G2 細胞存活之影響……………………………………65
圖十六、GPE之添加對於Hep G2 cells之影響……………………………………………66
圖十七、BME之添加對於HepG2 cells之影響……………………………………………67
圖十八、GPE對HepG2 cells活性氧物質之影響…………………………………………69
圖十九、GPE對HepG2 cells粒線體膜電位(ΔΨm)之影響………………………………70
圖二十、GPE對HepG2 cells鈣離子釋出之影響…………………………………………71
圖二十一、GPE對於Hep G2 cells 超氧自由基生成之影響……………………………73
圖二十二、利用DAPI染色來檢測GPE之添加對Hep G2 cells中DNA損傷之結果………………………………………………………………74

圖二十三、利用彗星試驗法來檢測GPE之添加對HepG2 cells中DNA損傷之情形…………………………………………………………………75

圖二十四、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株 (Hep G2cells) Bcl-2蛋白表現量(A)及其相對量化統計圖(B) ………………79

圖二十五、以西方墨點法分析GPE (500 μg/ml) 之添加對於人類肝癌細胞株 (Hep G2 cells) cytochrome c蛋白表現量(A)及其相對量化統計圖(B) ……..80

圖二十六、以西方墨點法分析GPE (500 μg/ml) 之添加對於人類肝癌細胞株
(Hep G2 cells)其pro-caspase 9及cleaved caspase 9蛋白表現量(A)及
其相對量化統計圖……………………………………………………………81
圖二十七、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells) pro-caspase 3及cleaved caspase 3蛋白表現量(A)及其相對量化統計圖(B) ……………………………………………………...82


圖二十八、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells) PARP蛋白表現量(A)及其相對量化統計圖(B) ……………..83

圖二十九、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells) AIF蛋白表現量(A)及其相對量化統計圖(B)………………..84

圖三十、 以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells) GRP78、GADD153及caspase 12蛋白表現量(A)及其相對量化統計圖(B)………………………………………………………..85


圖三十一、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells) Fas及FasL蛋白表現量(A)及其相對量化統計圖(B) ……….86

圖三十二、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells) caspase-8蛋白表現量(A)及其相對量化統計圖(B) …………87

圖三十三、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells)其ERK 1/2及JNK蛋白表現量(A) 及其相對量化統計圖(B) ……………………………………………………………………...88


圖三十四、以西方墨點法分析GPE (500 μg/ml)之添加對於人類肝癌細胞株(Hep G2 cells)其MMP-2及MMP-9蛋白表現量(A)及其相對量化
統計圖(B) ……………………………………………………………………...89

圖三十五、GPE之添加對HepG2 cells對於細胞轉移現象(A)及其量化圖(B)之影響…………………………………………………………………………91

圖三十六、GPE對CCl4誘導大鼠肝損傷之肝臟外觀變化………………………………96
圖三十七、GPE對CCl4誘導大鼠肝損傷之第四週血清AST (A)、ALT (B)活性之影響…………………………………………………………………..102

圖三十八、GPE對CCl4誘導大鼠肝損傷之肝臟中蛋白質含量之影響………………103
圖三十九、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中MDA含量之影響…………………………………………………………….104

圖四十、 綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中維生素C含量之影響………………………………………………………...105

圖四十一、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中維生素E含量之影響………………………………………………………...106

圖四十二、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中GSH含量之影響……………………………………………………………..107

圖四十三、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中SOD活性之影響……………………………………………………………..108

圖四十四、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中catalase活性之影響………………………………………………………….109

圖四十五、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中GSH-Px活性之影響…………………………………………………………110

圖四十六、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之肝臟中GST活性之影響……………………………………………………………..111

圖四十七、綠藻之80%乙醇萃取物(GPE)對CCl4誘導大鼠肝損傷之血漿總抗氧化力之影響……………………………………………………………..112
行政院衛生署統計資料 http://www.doh.gov.tw/
Friedman, S. L. (1997) Molecular mechanisms of hepatic fibrosisand principles of therapy. J. Gastroenterol. 32: 424-430.
Letteron, P., Labbe, G., Degott, C., Berson, A., Fromenty, B., Delaforge, M., Larrey, D. and Pessayre, D. (1990) Mechanism for the protective effect of silymarin against carbon tetrachloride
-induced lipid peroxidation and hepatotoxicity in mice. Evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant.
Biochem. Pharmacol. 39: 2027-2034.
翁鼎鈞。(2004)。台灣產生藥高氏柴胡大白鼠纖維化之保肝作用研究。高雄醫學大學碩士論文。
Liu, J. Y., Chen,C. C., Wang,W. H., Hsu, J. D., Yang, M. Y. and Wang, C. J. (2006) The protective effects of Hibiscus sabdariffa extract on CCl4-induced liver fibrosis in rats. Food Chem. Toxicol. 44: 336–343.
Horie, N., Hirabayashi, N., Takahashi, Y., Miyauchi, Y., Taguchi, H. and Takeishi, K. (2005) Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol. Pharm. Bull. 28: 574–579.
黃俊銘。(2002)。薑黃素對於人類大腸腫瘤細胞株(COLO-205)的影響。中國醫藥大學碩士論文。
Maria, W., Fatma, D., Frederike, C., Ling, Helmut, A., Jurgen, H. and Heinrich, S.(2003)Tumor- induced angiogenesis studied inconfrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J. 15: 995-1005.
Guthrie, N. and Carroll, K. K. (1998) Inhibition of mammary cancer by citrus flavonoids. Adv. Exp. Med. Biol. 439: 227-236.
Demeule, M., Brossard, M., Pagé, M., Gingras, D. and Béliveau, R.(2000) Matrix metalloproteinases inhibition by green tea catechins. Biochim. Biophys. Acta. 1478: 51-60.
Garbisa, S., Sartor, L., Biggin, S., Salvato, B., Benelli, R. and Albini, A.(2001)Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 822-832.
Jitsukawa, K., Suizu, R. and Hidano A. (1984) Chlorella photosensitization. new
phytophotodermatosis. Int. J. Dermatol. 23: 263-268.
Miranda, M. S., Sato, S. and Mancini-Filho, J. (2001) Antioxidant activity of the microalga Chlorella vulgaris cultered on special conditions. Boll. Chim. Farm. 140: 165-168.
黃娣儀。(2000)。綠藻對於大白鼠體內脂質代謝的影響。台北醫學大學保健營養學研究所碩士論文。
15 Shibata, S., Natori, Y., Nishihara, T., Tomisaka, K., Matsumoto, K., Sansawa, H. and Nguyen, V. C. (2003) Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin -induced diabetes. J. Nutr. Sci. Vitaminol. 49: 334-339.
Cherng, J. Y. and Shih, M. F. (2005) Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment. Life Sci. 76: 3001-3013.
Hidaka, S. Okamoto, Y. and Arita, M. (2004) A hot water extract of Chlorella pyrenoidosa reduces body weight and serum lipids in ovariectomized rats. Phytother. Res. 18: 164-168.
Okamoto, K., Iizuka, Y., Murakami, T., Miyake, H. and Suzuki, T. (1978) Effects of chlorella alkali extract on blood pressure in SHR. Jpn. Heart J. 19: 622-623.
Merchant, R. E. and Andre, C. A. (2001) A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern. Ther. Health Med. 7: 79-91.
Konishi, F., Tanaka, K., Himeno, K., Taniguchi, K. and Nomoto, K. (1985) Anti-tumor effect induced by a hot water extract of Chlorella vulgaris (CE) : resistance to Meth-A tumor growth mediated by CE-induced poly-morphonuclear leukocytes. Cancer Immunol. Immunother. 19: 73-78.
Wu, L. C., Ho, J. A. A., Shieh, M. C. and Lu, I. W. (2005) Antioxidant and antiproliferative activities of spirulina and chlorella water extracts. J. Agric. Food Chem. 53: 4207-4212.
陳榜。2005。肝癌防治。台灣中醫臨床醫學雜誌。11: 147。
吳耀銘,李伯皇。2006。肝癌。台灣醫學。10: 482-483。
Cameron, G. R.and Karunaratne, W. A. E. (1936) Carbon tetrachloride cirrhosis in relation to liver regeneration. J. Pathol. Bacterol. 42: 1-21.
Barry, H. and John, M. C. (1998) Carbon tetrachloride. Free Radic. Biol. Med. 547-552.
Som, S., Basu, S. and Mukherjee, D. (1981) Ascorbic acid metabolism in diabetes mellitus. Metabolism 30: 573-577.
Ohta, Y., Nishida, K., Sasaki, E., Kongo, M. and Ishiguro, I. (1997) Attenuation of disrupted hepatic active oxygen metabolism with the recovery of acute liver injury in rats intoxicated with carbon tetrachloride. Res. Commun. Mol. Pathol. Pharmacol. 95: 191-207.
Meinrad, B., Lutz, W. D. W., Eberhard, B. and Andreas, S. (2001) Mechanism of carbon tetrachloride-induced hepatotoxicity. Z. Naturforsch 56: 649-659.
Boll, M., Weber, L. W., Becker, E. and Stampfl, A. (2001) Hepatocyte damage induced by carbon tetrachloride: inhibited lipoprotein secretion and changed lipoprotein composition. Z. Naturforsch 56: 283-290.
Cunnane, S. C. (1987) Hepatic triacylglycerol accumulation induced by ethanol and carbon tetrachloride: Interactions with essential fatty acid and prostaglandins. Alcohol. Clin. Exp. Res. 1: 25-31.
Jaeschke, H. (2000) Reactive oxygen and mechanisms of inflammatory liver injury.J. Gastroenterol. Hepatol. 15: 718-724.
Pryor, W. A. (1994) Free radicals and lipid peroxidation: what they are and how they got they way . In Nature Antioxidants in Human Health and Disease. By Frei, B. pp 1-24. Academic Press: San Diego, CA.
Curtin, J. F., Donovan, M. and Cotter, T. G. (2002) Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods 265: 49-72.
Morrissey, P. A. and O’Brien, N. M. (1998) Dietary antioxidant in health and disease. Int. Dairy J. 8: 463-472.
Esterbauer, R. J., Schaur, H. and Zollner. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11: 81-128.
Moore, K. P., Darley-Usmar, V., Morrow, J. and Roberts, L. J. (1995) Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ. Res. 77: 335-341.
林天送。(1995)。氫氧自由基:毒性極高的破壞分子。健康世界 112: 6-10。
陳奕瑋。(2002)。石蓮萃取物對洋菇酪氨酸酶活性之影響。私立靜宜大學碩士論文。
陳惠英、顏國欽。(1998)。自由基、抗氧化防禦與人體健康。Nutr. Sci. J. 23: 105-121.
Davies, K. J. A. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: a hypothesis. J. Free Radic. Biol. Med. 2: 155-173.
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. and M. Mazur (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1–40.
Parker, L., Kraemer, K. and Rimbach, G. (2001) Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17: 888-895.
Heim, K. E., Tagliaferro, A. R. and Bobilya, D. J. (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13: 572-584.
李士瑛、黃進發、廖啟成。2000。天然抗氧化素材GSH、SOD及Astazanthin之開發與應用。生物產業。11: 155-163。
Turrens, J. F., Crapo, J. D. and Freeman, B. A. (1984) Protection against oxygen toxicity by intravenous injection of liposome-entrappde catalase and superoxide dismutase. J. Clin. Invest. 73: 87-95.
Upston, J. M., Witting, P. K., Brown, A. J., Stocker, R. and Jr, J. F. K. (2001) Effect of vitamin E on aortic lipid oxidation and intimal proliferation after arterial injury in cholesterol-fed rabbits. Free Radic. Biol. Med. 31: 1245-1253.
顏銘宏。2001。天然抗氧化劑之作用機轉。生藥資訊。9: 172-180.
Cadenas, E. (1995) Mechanism of oxygen activation and reactive oxygen species detoxification. In: Oxidative Stress and Antioxidant Defenses in Biology. International Thomaon Publishing Inc, New York. U. S. pp. 1-25.
Haan, J. D., Bladier, C. and Griffiths, P. (1998) Mice with a homozygous null mutation for thw most abundant glutatjione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273: 22528-22536.
Collins, L. and Garrett, M. D. (2005) Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr. Opin. Pharmacol. 5: 366-373.
Smith, M. L., and Fornace, A. J. (1996) Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat. Res. 340: 109-124.
Kerr, J. F., Wyllie, A. H. and Currie. A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239-257.
Reed, J. C. (1999) Mechanisms of apoptosis avoidance in cancer Curr. Opin. Oncol. 11: 68-75.
Afford, S. and Randhawa, S. Apoptosis. J. Clin. Pathol. 53: 55-63.
Matsuda, H. Strebel, F. R., Kaneko, T. Stephens, L., Danhauser, L. L., Jenkins, G. N., Toyota, N. and Bull, J. M. (1996) Apoptosis and necrosis occurring during different stages of primary and metastatic tumor growth of a rat mammary adenocarcinoma. Anticancer Res. 16: 1117-1121.
Nicotera, P., Leist, M. and Ferrando, M. E. (1999) Apoptosis and necrosis: different execution of the same death. Biochem. Soc. Symp. 66: 69-73.
Micholson, D. W. and Thornberry, N. A. (1997) Caspases: killer proteases. Trends Biochem. Sci. 22: 299-306.
Green, D. R. and Kroemer, G. (2004) The pathophysiology mitochondrial cell death. Science 305: 626-629.
Packham, G. and Stevenson, F. K. (2005) Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 114: 441-449.
Kim, R. (2005) Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem. Biophys. Res. Commun. 333: 336-343.
Ibrado, A. M., Huang, Y., Fang, G., Liu, L. and Bhalla, K. (1996) Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelognous leukemia HL-60 cells. Cancer Res. 56: 4743-4748.
Fiers, W., Beyaert, R., Declercq, W. and Vandenabeele, P. (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18: 7719-7730.
Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G. and Green, D. R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233.
Green, D. R. and kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science 305: 626-629.
Papatsoris, A. G. and Papavassiliou, A. G. (2001) Molecular ‘palpation’of BPH: a tale of MAPK signaling? Trends Mol. Med. 7: 288-292.
Orrenius, S., Zhivotovsky, B. and Nicotera, P. (2003) Regulation of cell death: the
calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4: 552-565.
Fujita, E., Kouroku, Y., Jimbo, A., Isoai, A., Maruyama, K. and Momoi, T. (2002) Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ. 9: 1108-1114.
Lamkanfi, M., Kalai, M. and Vandenabeele, P. (2004) Caspase-12: an overview. Cell
Death Differ. 11: 365-368.
Hitomi, J., Katayama, T., Taniguchi, M., Honda, A., Imaizumi, K. and Tohyama, M. (2004) Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett. 357: 127-130.
Barone, M. V., Crozat, A., Tabaee, A., Philipson, L. and Ron, D. (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8: 453-464.
McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. (2001)
Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21: 1249-1259.
Mak, T. W. and Yeh, W. C. (2002) Signaling for survival and apoptosis in the immune system. Arthritis Res. 4: 243-252.
Rundhaug, J. E. (2005) Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med. 9: 267-285.
William, G. S. (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103:1237-1241.
Gregory, J. M., Chen, Y., R-Matt, S., Adam, M., Christopher, O., Robert, M., Charles, H. S. and Chung, S.(2002)A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. Am. J. Surg. 183: 588-594.
Yamaguchi, T., Takamura, H., Matoba, T. and Terao, J. (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenol-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 62: 1201-1204.
Re, R., Pellegrative, N., Peoteggente, A., Pannala, A. Yang, M. and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237.
Sato, M. (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 44: 37-41.
Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.
Sladowski, D., Steer, S. J., Clothier, R. H. and Balls, M. (1993) An improved MTT assay. J. Immunol. Methods 157: 203-207.
Royall, J. A. and Ischiropoulos, H. (1993) Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348-355.
Petit. P. X., O’Connor, J. E., Grunwald, D. and Brown, S. C. (1990) Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur. J. Biochem. 194: 389-397.
Royall, J. A. and Ischiropoulos, H. (1993) Evaluation of 2`,7`-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348-355.
Wilson, W. D., Tanious, F. A., Barton, H. J., Jones, R. L., Fox, K., Wydra, R. L. and Strekowski, L. (1990) DNA sequence dependent binding modes of 4'',6-diamidino-2-phenylindole (DAPI). Biochemistry 29: 8452-8461.
Mckelvey-Martin, V. J., Green, M. H., Schmezer, P., Pool-Zobel, B. L., Demeo, M. P. and Collins, A. (1993) The signal cell gel electrophoresis assay (comet assay): a European review. Mutat. Res. 288: 47-63.
Robad, J. and Gryglewski, R. J. (1988) Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837-841.
Matsumoto, K. and Nakamura, T. (2000) Hepatocyte growth factor and met in tumour invasion-metastasis: from mechanisms to cancer prevention. Cancer metastasis, molecular and cellular mechanisms and clinical intervention pp 143-193.
Smith, P., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Prorenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. T. and Klenk, D. C. (1985) Measurement of protein using bicinchomic acid. Anal. Biochem. 15: 76-85.
張玉瓏、徐乃芝、許素菁。(2003)。西方墨點法實驗。生物技術。pp84-85。
Yang, C. S., Chou, S. T., Liu, L., Tsai, P. J. and Kuo, J. S. (1995) Effect of ageing on human plasma glutathione concentrations as determined by high-performance liquid chromatography withfluorimetric detection. J. Chromatogr. B, Biomed. Appl. 674: 23-30.
Marklund, S. and Marklund, G. (1974) Involvenment of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474.
Paglia, D. E. and Valentine, W. N. (1967) Studies on the qualitative characterization of erythrocyte glutatathione peroxidase. J. Lab. Clin. Med. 70: 159-169.
Aebi, H. (1983) Catalase. In: Methods of Enzymatic Analysis. Bergmeyer, H. U. Weinhein Deerfield beach, FL: USA. pp.673-686.
Tatum, V. L., Changchit, C. and Chow, C. K. (1990) Measurement of malondialdehyde by high performance lipid chromatography with fluorescence detection. Lipids 25: 226-229.
Reynolds, E. S. and Ree, H. J. (1971) Membrane denaturation following carbon tetrachloride. Lab. Invest. 25: 269-278.
Bergmeyer, H. U. and Hørder, M. (1980) International federation of clinical chemistry, scientific committee. Expert panel on enzymes. IFCC document stage 2, draft 1; 1979-11-19 with a view to an IFCC recommendation. IFCC methods for the measurement of catalytic concentration of enzymes. Part 3. IFCC method for alanine aminotransferase. J. Clin. Chem. Clin. Biochem. 18: 521-534.
Smith, P., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Prorenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. T. and Klenk, D. C. (1985) Measurement of protein using bicinchomic acid. Anal. Biochem. 15: 76-85.
Kenneth, P., Mitton, R. and Trevithick. (1994) High-Performance-Liquid Chromatography -Electrochemical detection of antioxidants in vertebrate lens: glutathione, tocopherol, and ascorbate. Methods Enzymol. 233: 523-539.
Chou, S. T., Ko, L. E. and Yang, C. S. (2000) Dtermination of tissue α-tocopherol in senescence -accelerated mice by high-performance liquid chromatography with fluorimetric detection. Anal. Chim. Acta. 419: 81-86.
Habig, W. H. and Pabst, M. J. (1974) Glutathione S-transferase: the frist enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
Piacente, S., Montoro, P., Oleszek, W. and Pizza, C. (2004) Yucca schidigera bark: phenolic constituents and antioxidant activity. J. Nat. Prod. 67: 882-885.
Rózek, A., Achaerandio, I., Almajano, M. P., Güell, C., López, F. and Ferrando, M. (2007) Solid foodstuff supplemented with phenolics from grape: antioxidant properties and correlation with phenolic profiles. J. Agric. Food Chem. 55: 5127-5155.
Pozo-Guisado, Eulalia., Merino, J. M., Mulero-Navarro, S., Lorenozo-Benayas, M. J. Centeno, F., Alvarez-Barrientos, A. and Fernandez Salguero, P. M. (2005) Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with drownregulation of Bcl-2 and NF-κB. Int. J. Cancer 115: 74-84.
Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindstan, T., Turka, I. A. and Mao, X. (1993) Bcl-xL, a Bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608.
Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X. and Akey, C. W (2002) Three -dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9: 423.
Cregan, S. P., Dawson, V. L. and Slack, R. S. (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23: 2785.
Li, L. Y. Luo, X. and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochindria. Nature 412: 95.
Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondria damage in the Fas pathway of apoptosis. Cell 94: 491.
Rao, R. V., Ellerby, H. M. and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11: 372-380.
Chan, S. L., Culmsee, C., Haughey, N., Klapper, W. and Mattson, M. P. (2002) Presenilin-1 mutations sensitize neurons to DNA damageinduced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12. Neurobiol. Dis. 11: 2–19.
Little, E., Ramakrishnan, M., Roy, B., Gazit, G. and Lee, A. S. (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr. 4: 1–18.
Oyadomari, S. and Mori, M. (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11: 381–389.
Maytin, E. V., Ubeda, M., Lin, J. C. and Habener, J. F. (2001) Stressinducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and –independent mechanisms. Exp. Cell Res. 267: 193-204.
Yeh, T. C. Chiang, P. C., Li, T. K. Hsu, J. L. Lin, C. J., Wang, S. W., Peng, C. Y. and Guh, J. H. (2007) Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem. Pharmacol. 73: 782-792.
Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c -independent activation of caspase-9 by caspase-12. J. Biol. Chem. 227: 34287-34294.
Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., Rincon, M., Zheng, T. S., Davis, R. J., Rakic, P. and Flavel, R. A. (1997) Absence of excitotoxic-induced apoptosis in the hippocampus of mice lacking the Jnk 3 gene. Nature 389: 865–870.
Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Barsagi, D., Jones, S. N., Flavel, R. A. and Davis, R. J. (2000) Requirement of JNK for stress-induced activation of the cytochrome-c mediated death pathway. Science 288: 870–874.
Kharbanda, S., Saxena, S., Yoshida, K. Pandey, P., Kaneki, M., Wang, Q., Cheng, K., Chen, Y. N. Campbell, A. Sudha, T. Yuan, Z. M. Narula, J. Weichselbaum, R. Nalin, C. and Kufe, D. (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-xL in response to DNA damage. J. Biol. Chem. 275: 322–327.
Maundrell, K. Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J. C. and Arkinstall, S. (1997) Bcl-2 undergoes phosphorylation by c-Jun-N-terminal kinase/stress activated protein kinases in the presence of constitutively active GTP-binding protein Rac1. J. Biol. Chem. 272: 25238–25242.
Timur, M., Akbas, H. A. and Ozben, T. (2005) The effect of Topotencan on oxidative stress in MCF-7 human breast cancer cell line. Acta. Biochim. Pol. 52: 897-902.
Davis, W., Ronai, Z. and Tew, K. D. (2001) Cellular thiols and reactive oxygen species in drug-induce apoptosis. J. Pharmacol. Exp. Ther. 296: 1-6.
Masuda, Y. (2006) Learning toxicology from carbon tetrachloride-induced hepatotoxicity. Yakugaku Zasshi 126: 885-899.
Murthy, K. N., Rajesha, J., Swamy, M. M. and Ravishankar, G. A. (2005) Comparative evaluation of hepatoprotective activity of carotenoids of microalgae. J. Med. Food 8: 523-528.
Mori, J. Matsunaga, T., Takahashi, S., Hasegawa, C. and Saito, H. (2003) Inhibitory activity on lipid peroxidation of extracts from marine brown alga. Phytother. Res. 17: 549-551.
Frank, R., Razao, I., Xiaoying, Z., Shabna, R., Hideaki, N.,Michael, J. P., Christopher, B. and John, P. I. (2002) Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition. J. Biol. Chem. 29: 11069-11076.
Sheweita, S. A., El-Gabar, M. A. and Bastawy, M. (2001) Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants. Toxicology 165: 217–224.
Chidambara Murthy, K. N., Vanitha, A., Rajesha, J., Mahadeva Swamy, M., Sowmya, P. R. and Ravishankar, G. A. (2005) In vivo antioxidant activity of carotenoids from Dunaliella salina — a green microalga. Life Sci. 76: 1381-1390.
Lee, S., Lee, Y. S., Jung, S. H., Kang, S. S. and Shin, K. H. (2003) Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch. Pharm. Res. 9: 719-722.
Kadiiska, M. B., Gladen, B. C., Baird, D. D., Dikalova, A. E., Sohal, R. S., Hatch, G. E., Jones, D. P., Mason, R. P. and Barrett, J. C. (2000) Biomarkers of oxidative stress study: are plasma antioxidants markers of CCl4 poisoning ? Free Radic. Biol. Med. 28: 838-845.
林竫怡。(2003)。黃豆發酵乳對大白鼠體內抗氧化狀態與血脂之影響。台北醫學大學保健營養學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔