(3.236.228.250) 您好!臺灣時間:2021/04/17 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家強
研究生(外文):Chia-Chiang Hsu
論文名稱:環氧丁烷、2-丙醇與2,2,4-三甲基戊烷混合物之汽液相平衡研究
論文名稱(外文):Vapor-Liquid Equilibria for Mixtures of Tetrahydrofuran, 2-Propanol, and 2,2,4-Trimethylpentane
指導教授:杜建勳教授
指導教授(外文):Chein-Hsiun Tu
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007/07/
畢業學年度:95
語文別:中文
論文頁數:199
中文關鍵詞:逸壓係數汽液平衡
外文關鍵詞:Vapor-Liquid Equilibriafugacity coefficients
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
由於全球的環保意識抬頭,在現有資源的作法下,是在汽油混合的過程中加入含氧添加物作為辛烷值提升劑,而石油工業中必須取得對於汽油混合過程內,針對現有提升劑之相關熱力學物理性質數據,這是由於其數據結果對於製程設計、汽油的混合比例及使用含氧添加物在未來所產生的環境影響結果有著重要的關係。本實驗是使用環氧丁烷及異丙醇兩種辛烷值提升劑,在汽油中的碳氫化合物2,2,4-三甲基戊烷(異辛烷),於101.3 kPa下進行三組雙成分環氧丁烷 + 異丙醇、環氧丁烷 + 異辛烷、異丙醇 + 異辛烷及一組三成分環氧丁烷 + 異丙醇 + 異辛烷之汽液平衡量測。
實驗系統中液相活性係數計算方式分為含逸壓係數及修正Raoult’s Law兩種。氣相逸壓係數是利用SRK的狀態方程式來計算。在三組雙成分之中,只在異丙醇+異辛烷雙成分系統中有最小共沸點的產生。在熱力學一致性測試部份,雙成分是使用Kojima測試法及Van Ness直接測試法來進行測試;三成分混合系統則是以Wisniak和Tamir改良的McDermott-Ellis法做熱力學一致性測試。雙成分液相活性係數是以Margules、Van Laar、Wilson、NRTL及UNIQUAC五種模式來做關聯,並以各模式中之最佳參數來預測三成分系統的汽液平衡數據。雙成分的過剩莫耳吉布士自由能、平衡沸點及汽相平衡組成也利用Redlich-Kister方程式來關聯;三成分的過剩吉布士自由能與純成分莫爾分率沸點溫度的平均偏差則利用Jasinski和Malanowskiz方程式、Cibulka方程式、Sing方程式、Pintos方程式、Calvo方程式、Mascato方程式及其他的方程式來做關聯。
Because of global environmental concerns over the current stock of oxygenated additives used for octane number enhancement in gasoline blends, thermodynamic data are required by the petroleum industry for currently used additives. The resulting thermophysical data are important in process engineering design, gasoline blending, and the prediction of the environmental fate of oxygenated additives. The blended octane number enhancers considered in this work are tetrahydrofuran and 2-propanol. We measured the vapor-liquid equilibrium at 101.3 kPa for three binary systems including tetrahydrofuran + 2-propanol, tetrahydrofuran + 2,2,4-trimethylpentane, 2-propanol + 2,2,4-trimethylpentane and one ternary system tetrahydrofuran + 2-propanol + 2,2,4-trimethylpentane. The third added component, 2,2,4-trimethylpentane (isooctane), represents the hydrocarbon in gasoline.
The activity coefficients of liquid mixtures were calculated by both the equation with fugacity coefficients and the equation based on the modified Raoult’s law. The SRK equation of state was used to calculate the fugacity coefficients. In the three binary systems, only 2-propanol + 2,2,4-trimethylpentane binary system exhibits a minimum boiling azeotrope. For thermodynamic consistency, binary systems were tested by Kojima test and the direct test by Van Ness. The thermodynamic consistency of the ternary data was tested by the McDermott-Ellis method modified by Wisniak and Tamir. In the treatment of experimental date, the liquid activity coefficients of binary systems were correlated using the Margules, Van Laar, Wilson, NRTL and UNIQUAC models. The models with the best-fitted parameters were used to predict the ternary VLE data. The excess molar Gibbs free energy, equilibrium boiling temperature deviations and composition deviations of binary systems were correlated with the Redlich-Kister equation. For the ternary system, we used the equations from Jasinski and Malanowskiz, Cibulka, Sing, Pintos, Calvo, Mascato and the other equations to correlate the excess molar Gibbs free energy and deviations from mole fraction average of pure component boiling temperature.
摘要 I
Abstract III
目錄 IV
表目錄 VII
圖目錄 X
符號說明 XVII

第一章 緒論 1
1-1 前言 1
1-2 汽油的重要性質 2
1-3 汽油與添加劑MTBE 4
1-4 MTBE之影響 6
1-5 MTBE之健康效應 7
1-6 各國相關法規及因應措施 8
1-7 相關文獻調查 9
1-8 汽液平衡裝置介紹 11

第二章 理論 16
2-1 平衡理論 16
2-2 汽液平衡理論 18
2-3 熱力學一致性測試簡介 20
2-3-1 Van Ness直接測試法 23
2-3-2 Kojima測試法 25
2-3-3 Herington面積測試法 27
2-3-4 Fredenslund逐點測試法 29
2-3-5 Wisniak熱力學一致性測試法 32
2-3-6 三成分系統之熱力學一致性測試 33
2-4 汽液相平衡數據處理方法 34
2-4-1 狀態方程式方法 35
2-4-2 活性係數方法 36

第三章 實驗部分 48
3-1 實驗藥品 48
3-2 實驗設備 48
3-2-1 汽液平衡設備 48
3-2-2 壓力控制設備 50
3-2-3 組成分析裝置 52
3-2-4 其他裝置 53
3-3 實驗步驟 54
3-3-1 樣品配製 55
3-3-2 檢量線建立 56
3-3-3 汽液相平衡實驗步驟 60

第四章 結果與討論 62
4-1 汽液相平衡實驗結果 62
4-2 共沸點的決定 65
4-3 熱力學一致性測試結果 67
4-3-1 雙成分系統熱力學一致性測試結果 67
4-3-2 三成分系統熱力學一致性測試結果 71
4-4 理論模式參數計算迴歸結果 71

第五章 結論 84

附錄 159

參考文獻 168
(1)經濟部能源局網站/能源統計年報/車用汽油供需平衡表(079~094)http://www.moeaec.gov.tw/ePublication/energy_year/main/default.asp,1995

(2)台朔石化股份有限公司網站/知識百科/油的知識/漫談汽油特性(一) http://www.fpcc.com.tw/knowledge/knowledge_01.asp,2007

(3)中國石油股份有限公司網站/客戶服務/客服中心/客戶問題彙總-汽油類http://www.cpc.com.tw/big5_BD/tmtd/content/index01.as
p?sno=241&pno=29,2007
(4)陳永昌,汽車引擎第1章第二節-柴油引擎之燃燒,新科技書局,1991。
(5)許茂智、許閎富,汽油與辛烷值,高中基礎化學第10章第二節-常見的有機化合物,南一書局,1995。
(6)Mennear, J. H. Carcinogenecity Studies on MTBE: Critical Review and Interpretation. Risk Analysis 1997, 17, 673-681.
(7)Johanson, G.; Nihlen, A.; Lof, A. Toxicokinetics and Acute Effects of MTBE and ETBE in Male Volunteers. Toxicology letters 1995, 82-83.
(8)Juliani, G.; Gandini, G.; Gabasio, S. Transcutaneous Chemical Cholelitholysis with Methyl Tertiary Butyl Ether(MTBE)-first Results in Man. Radiologia Medica 1985, 71, 569-574.
(9)Bures, E.; Cano, C.; De Wirth, A. Vapor-Liquid Equilibria in the System 2-Propanol-2,2,4-Trimethylpentane. J. Chem. Eng. Data 1959, 4, 199-200.
(10)Hiaki, T.; Takahashi, K.; Tsuji, T.; Hongo, M.; Kojima, K. Vapor-Liquid Equilibria of 1-Propanol or 2-Propanol with 2,2,4-Trimethylpentane at 101.3 kPa. J. Chem. Eng. Data 1994, 39, 602-604.
(11)Du, T. B.; Tang, M.; Chen, Y. P. Vapor–Liquid Equilibria of the Binary Mixtures of Tetrahydrofuran with 2,2,4-Trimethylpentane, Methylcyclohexane and n-Heptane at 101.3 kPa. Fluid Phase Equilib. 2001, 192, 71-83.
(12)Yoshikawa, Y.; Takagi, A.; Kato, M. Indirect Determination of Vapor-Liquid Equilibria by a Small Ebulliometer. Tetrahydrofuran -Alcohol Binary Systems. J. Chem. Eng. Data 1980, 25, 344-346.
(13)Nagahama, K. VLE Measurements at Elevated Pressures for Process Development. Fluid Phase Equilib. 1996, 116, 361-372.
(14)李亮三、黃俊豐,流體相平衡實驗裝置,化工,1993, 40, 61-75.
(15)蔡坤龍、陳經緯、蔡繁男,超臨界流體萃取,化工,1995, 42, 32-47.
(16)林河木、李明哲,高溫汽-液相平衡量測與數據關聯,化工,1996, 43, 33-42.
(17)陳延平,汽液相平衡實驗與理論計算,化工,1996, 43, 53-66.
(18)Malanowski, S. Experimental Methods for Vapour-Liquid Equilibria. Part I. Circulation Methods. Fluid Phase Equilib. 1982, 8, 197-219.
(19)Chen, C. C.; Tang, M.; Chen, Y. P. Vapor-Liquid Equilibria of Binary and Ternary Mixtures of Cyclohexane, 3-Methyl-2-Butanone, and Octane at 101.3 kPa. J. Chem. Eng. Data 1996, 41, 557-561.
(20)Paul, R. N. Study of Liquid-Vapor Equilibrium in Improved Equilibrium Still. J. Chem. Eng. Data 1976, 21, 165-169.
(21)Othmer, D.; Silvis, F. S.; Spiel, A. Composition of Vapors from Boiling Binary Solutions: Pressure Equilibrium Still for Studying Water-Acetic Acid System. Ind. Eng. Chem. 1952, 44, 1864-1872.
(22)Kato, M.; Aizawa, K.; Kanahira, T.; Ozawa, T. A New Experimental Method of Vapor-Liquid Equilibria at High Pressure. J. Chem. Eng. Japan 1991, 24, 767.
(23)Legret, D.; Richon, D.; Renon, H. Vapor Liquid Equilibria up to 100 MPa: a New Apparatus. AIChE J. 1981, 27, 203-207.
(24)Lin, H. M.; Kim, H.; Leet, W. A.; Chao, K. C. New Vapor-Liquid Equilibrium Apparatus for Elevated Temperatures and Pressures. Ind. Eng. Chem. Fundam. 1985, 24, 260-262.
(25)Lin, H. M.; Lin, Y. R. Flow Apparatus of Phase Equilibrium Measurement. AIChE J. 1990, 36, 1597-1600.
(26)Huang, S. H.; Lin, H. M.; Chao, K. C. Experimental Investigation of Synthesis Gas Solubility in Fischer-Tropsch Reactor Slurry. Fluid Phase Equilib. 1987, 36, 141-148.
(27)Smith, J. M.; Van Ness, H. C. Introduction to Chemical Engineering Thermodynamics, 4th Ed., McGraw-Hill, New York, 1987.
(28)Van Ness, H. C. Thermodynamics in the Treatment of Vapor- Liquid Equilibrium (VLE) Data. Pure and Applied Chemistry 1995, 67, 859-872.
(29)Kojima, K.; Moon, H. M.; Ochi, K. Thermodynamic Consistency Test of Vapor-Liquid Equilibrium Data. Fluid Phase Equilib. 1990, 56, 269-284.
(30)Herington, E. F. G. Test of the Consistency of Experimental Isobaric Vapor-Liquid Equilibrium Data. J. Inst. Petrol. 1951, 37. 457.
(31)Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Iiquid Equilibrium using UNIFAC. Elsevier, Amsterdam, 1977.
(32)Wisniak, J. A New Test for the Thermodynamic Consistency of Vapor-Liquid Equilibrium. Ind. Eng. Chem. Res. 1993, 32, 1531-1533.
(33)Gmehling, J.; Onken, U.; Arlt, W.; Grenzheuser, P.; Weidlich, U.; Kolbe, B.; Rarey-Nies, J. Vapor-Liquid Equilibrium Data Collection. DECHEMA, Frankfurt, 1978.
(34)Van Ness, H. C.; Byer, S. M.; Gibbs, R. E. Vapor-Liquid Equilibrium. Part I. An Appraisal of Data Reduction Method. AIChE J. 1973, 19, 238.
(35)Wisniak, J.; Tamir, A. Vapor-Liquid Equilibria in the Ternary Systems Water-Formic Acid-Acetic Acid and Water-Acetic Acid-Propionic Acid. J. Chem. Eng. Data 1977, 22, 253-260.
(36)McDermott, C.; Ellis, S. R. M. A Multicomponent Consistency Test. Chem. Eng. Sci. 1965, 20, 293-295.
(37)Soave, G. Equilibrium Constants from a Modified Redlich- Kwong Equation of State. Chem. Eng. Sci. 1972, 27, 1197-1203.
(38)Patel, N. C.; Teja, A. S. A New Cubic Equation of State for Fluid and Fluid Mixture. Chem. Eng. Sci. 1982, 37, 463-473.
(39)Stryjek, R.; Vera, J. H. PRSV2: A Cubic Equation of State for Accurate Vapor-Liquid Equilibrium Calculations. Can. J. Chem. Eng. 1986, 64, 820.
(40)Huang, S. H.; Radosz, M. Equation of State for Small, Large, Polydisperse and Associating Molecules: Extension to Fluid Mixture. Ind. Eng. Chem. Res. 1991, 30, 1994-2005.
(41)Dickman, R.; Hall, K. C. Equation of State for Chain Molecules: Continuous Space Analogy of Flory Theory. J. Chem. Phys. 1986, 84, 4108.
(42)Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solution. Ind. Eng. Chem. 1948, 40, 345-348.
(43)Gess, M. A.; Danner, R. P. Thermodynamic Analysis of Vapor-Liquid Equilibria : Recommended Models and a Standard Data Base. New York: AIChE, 1991.
(44)Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed., Prentice-Hall Englewood Cliffs, N.J., 1986.
(45)Van Ness, H. C.; Abbott, M. M. Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to Phase Equilibria, sec. 5-7. McGraw-Hill, New York, 1982.
(46)Wilson, G. M. Vapor-Liquid Equilibrium XI, A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc. 1964, 86, 127-130.
(47)Renon, H.; Prausnitz, J. M. Local Compositions in Thermo- dynamic Excess Functions for Liquid Mixture. AIChE J. 1968, 14, 135-144.
(48)Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Free Energy of Partly or Completely Miscible Systems. AIChE J. 1975, 21, 116-128.
(49)Redlich, O.; Kister, A. T. On the Thermodynamics of Solutions. IV. The Determination of Liquid-Vapor Equilibria by Measuring the Total Pressure. J. Am. Chem. Soc. 1949, 71, 505-507.
(50)Orye, R. V.; Prausnitz, J. M. Multicomponent Equilibria with the Wilson Equation. Ind. Eng. Chem. 1965, 57, 18-26.
(51)Hunsmann, W. Verdampfungsgleichgewicht von Ameisensäure / Essigsäureund von Tetrachlorkohlenstoff / Perchloräthylen -Gemischen. Chemie Ingenieur Technik 1967, 39, 1142-1145.
(52)Loras, S.; Aucejo, A.; Munoz, R.; Wisniak, J. Isobaric Vapor-Liquid Equilibrium in the Systems 3-Methylpentane + Ethyl 1,1-Dimethylethyl Ether, + Diisopropyl Ether, and + Tetrahydrofuran J. Chem. Eng. Data 1999, 44, 583-587.
(53)Kobe, K. A.; Ravica, A. E.; Vohra, S. P. Critical Properties and Vapor Pressures of Ethers and Heterocyclic Compounds. J. Chem. Eng. Data 1956, 1, 50-56.
(54)Loras, S.; Aucejo, A.; Munoz, R. Vapor-Liquid Equilibria in the Systems 3-Methylpentane + Methyl 1,1-Dimethylethyl Ether and 3-Methylpentane + Methyl 1,1-Dimethylpropyl Ether at 101.3 kPa. Fluid Phase Equilib. 1998, 156, 185-195.
(55)Hiaki, T.; Takahashi, K; Tsuji, T.; Hongo, M.; Kojima, K. Vapor-Liquid Equilibria of 1-Propanol or 2-Propanol with 2,2,4-Trimethylpentane at 101.3 kPa. J. Chem. Eng. Data 1994, 39, 602-604.
(56)Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons: New York, 1986.
(57)Nagata, I.; Tamura, K.; Miyai, K. Isothermal Vapor-Liquid Equilibria of Mixtures of (Methanol + Ethanol + 1-Propanol or 2-Propanol) at 333.15 K. Fluid Phase Equilib. 2000, 170, 37-48.
(58)Nagata, I. Isothermal Vapor-Liquid Equilibria for the Ternary Methanol-Ethanol-Benzene System. J. Chem. Eng. Data 1985, 30, 201-203.
(59)Font, A.; Asensi, J. C.; Ruiz, F.; Gomis, V. Application of Isooctane to the Dehydration of Ethanol. Design of a Column Sequence To Obtain Absolute Ethanol by Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 2003, 42, 140-144.
(60)Martinez-Soria, V.; Pena, M. P.; Monton, J. B. Vapor-Liquid Equilibria for the Binary Systems Isobutyl Alcohol + Toluene, + Isooctane, and + Methylcyclohexane at 101.3 kPa. J. Chem. Eng. Data 1999, 44, 608-612.
(61)Hiaki, T.; Tatsuhana, K.; Tsuji, T.; Hongo, M. Isobaric Vapor-Liquid Equilibria for 2-Methoxy-2-methylpropane + Ethanol + Octane and Constituent Binary Systems at 101.3 kPa. J. Chem. Eng. Data 1999, 44, 323-327.
(62)Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Cyclohexanone with Hexane, Heptane, Octane, Nonane, Decane, Dodecane, and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 435-440.
(63)Daubert, T. E., Danner, R. P., Sibul, H. M., Stebbins, C. C. DIPPR Data Compilation of Pure Compound Properties, Project 801 Sponsor Release. DIPPR, AIChE, New York, 1993.
(64)Ambrose, D.; Sprake, C. H. S. Thermodynamic Properties of Organic Oxygen Compounds XXV. Vapour Pressures and Normal Boiling Temperatures of Aliphatic Alcohols. J. Chem. Thermodyn. 1970, 2, 631-645.
(65)Scott, D. W. Tetrahydrofuran: Vibrational Assignment, Chemical Thermodynamic Properties, and Vapor Pressure. J. Chem. Thermodyn. 1970, 2, 833-837.
(66)CHEMCAD Software, Version 4. 1. 6, Chemstations Inc. Houston, 1998.
(67)Nelder, J. A.; Mead, R. A. Simplex Method for Function Minimization. Comput. J. 1965, 7, 308-313.
(68)Jasinski, B.; Malanowski, S. Calculation of Multicomponent Vapour-Liquid Equilibrium from Liquid Boiling Temperature Data. Chem. Eng. Sci. 1970, 25, 913-920.
(69)Cibulka, I. Estimation of Excess Volume and Density of Ternary Mixtures of non Electrolytes from Binary Data. Collect. Czech. Chem. Commun. 1982, 47, 1414–1419.
(70)Singh, P. P.; Nigam, R. K.; Sharma, S. P.; Aggarwal, S. Molar Excess Volumes of Ternary Mixtures of Nonelectrolytes. Fluid Phase Equilib. 1984, 18, 333-344.
(71)Pintos, M.; Amigo, A.; Bravo, R.; Calvo, E. Excess Volumes for (Tetrahydropyran + Heptane + Heptan-1-ol or Octan-1-ol) at the Temperature 298.15 K. J. Chem. Thermodyn. 1994, 26, 803-807.
(72)Calvo, E.; Castro, I.; Pintos, M.; Amigo, A.; Bravo, R. Excess Volumes for (Tetrahydrofuran + Heptane + Heptan-1-ol or Octan-1-ol) at the Temperature 298.15 K. J. Chem. Thermodyn. 1995, 27,1221-1226.
(73)Mascato, E.; Mosteiro, L.; Pineiro, M. M.; Garcia, J.; Iglesias, T. P.; Legido, J. L. Thermodynamic Properties of Mixing for (1-Alkanol + an-Alkane + a Cyclic Alkane) at T = 298.15 K. I. (n-Hexane + Cyclohexane + 1-Butanol). J. Chem. Thermodyn. 2001, 33, 269-286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔