跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李侃衡
研究生(外文):Kan-Heng Lee
論文名稱:權益連結年金保險內含選擇權之定價與避險—考慮隨機波動效果
論文名稱(外文):Valuation of Equity Indexed Annuities Embedded Options under Stochastic Volatility Settings
指導教授:林忠機林忠機引用關係楊曉文楊曉文引用關係
指導教授(外文):Chung-Gee LinSharon Sheauwen Yang
學位類別:碩士
校院名稱:東吳大學
系所名稱:商用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:47
中文關鍵詞:解析公式權益連結年金保險保證保險隨機波動
外文關鍵詞:analytic formulaEquity Indexed Annuity (EIA)guaranteestochastic volatility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:2
An equity indexed annuity (EIA) with a minimum rate of return guarantee (EIAMG) has become one of the most popular instruments in the life insurance industry. In this research, we deal with the EIAs embedded exotic options. However, as the stochastic volatility features inherent in the linked financial asset prices are extensively witnessed, few academic works pay attention to the pricing and hedging of stochastic volatility EIAMG. This paper extends the study of Hull and White (1987) and integrates the Taylor series expansion for deriving analytic solution of EIAMG with stochastic volatility. Numerical experiments show that our analytic solution performs very well and is computationally efficient as benchmarked with large sample Monte Carlo simulations. Our analytic formula can also be treated as a practical tool for pricing and hedging stochastic volatility EIAMG, since it is easy to implement and is more desirable as the computing speed is an important consideration. Besides, considering stochastic volatility can lower the value of EIAMG and the hedging cost.
1.Introduction………………………………………………………………….1
2.Literature Review…………………………………………………………….1
3.Analytic Approximately Formulae for Valuation of EIAMG…………………5
3.1.Financial Model Settings……………………………………………………5
3.2.The EIA with an Extended Point-to-point Design…………………………..5
3.3.Derivation of Valuation Formula……………………………………………6
3.3.1.The Stochastic Volatility Problem…………………………………………7
3.3.2.Incorporating Stochastic Volatility………………………………………..9
4.Hedge Ratios…………………………………………………………………..11
5.Numerical Analysis……………………………………………………………14
6.Conclusions……………………………………………………………………18
Reference………………………………………………………………………..19
Appendix A --- The Analytic Formula of an EIA with Constant Volatility………21
Appendix B --- The Analytic Formula of an EIA with Stochastic Volatility……..22
Appendix C --- The Hedge Ratios of an EIA with Constant Volatility…………..24
Appendix D --- The Hedge Ratios of an EIA with Stochastic Volatility…………25
Black, F. and M. Scholes, 1972, “The Valuation of Option Contracts and a Test of Market Efficiency,” Journal of Finance, 27, 399-417.
Black F. and M. Scholes, 1973, “The Pricing of Options and Corporate liabilities,” Journal of Political Economy, 81, 637-654.
Boyle, P.P., 1977, “A Monte Carlo Approach,” Journal of Financial Economics, 4, 323-338.
Brennan, M.J. and E.S. Schwartz, 1976, “The Pricing of Equity-Linked Life Insurance Policies with an Asset Value Guarantee,” Journal of Financial Economics, 3, 195-213.
Brennan, M.J. and E.S. Schwartz, 1978, “Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis,” Journal of Financial and Quantitative Analysis, 13, 461-474.
Coleman, T.F., Kim, Y., Li, Y. and Patron, M., 2007, “Robustly Hedging Variable Annuities with Guarantees Under Jump and Volatility Risks,” Journal of Risk & Insurance, 74, 2, 347-376. Available at SSRN: http://ssrn.com/abstract=987402
Cox, J.C., S.A. Ross and M. Rubinstein, 1979, “Option Pricing: A Simplified Approach,” Journal of Financial Economics, 7, 229-263.
Geske, R. 1979, “The Valuation of Compound Options,” Journal of Financial Economics, 7, 63-81.
Hardy, Mary, 2004, “Ratchet Equity Indexed Annuities,” 14th Annual International AFIR Colloquium.
Hull, J. and A. White, 1987, “The Pricing of Options on Assets with Stochastic Volatilities,” The Journal of Finance, 42, 281-300.
Hull, John C., 2006, “Options, Futures, and Other Derivatives,” 6th Edition, New York: Prentice Hall.
Johnson, H. and D. Shanno, 1987, “Option Pricing When the Variance Is Changing,” Journal of Financial and Quantitative Analysis, 22, 143-151.
Lee, H., 2002, “Pricing equity-indexed annuities embedded with exotic options,” Contingencies, American Academy of Actuaries, January-February 2002, 34-38.
M�幨ler, T., 1998, “Risk-Minimizing Hedging Strategies for Unit-Linked Life Insurance Contracts,” SATIN Bulletin, 28, 17-47.
M�幨ler, T., 2001a, “Risk-Minimizing Hedging Strategies for Insurance Payment Processes,” Finance and Stochstics, 5(4), 419-446.
M�幨ler, T. 2001b, “Hedging Equity-Linked Life Insurance Contracts,” North American Actuarial Journal, 5(2), 79-95.
Nielsen, J. and K. Sandmann, 2003, “Pricing Bounds on Asian Options,” Journal of Financial and Quantitative Analysis, 38(2), 449-473.
Schrager, D.F., A.A.J. Pelsser, 2004, “Pricing Rate of Return Guarantees in Regular Premium Unit Linked Insurance,” Insurance Mathematics and Economics 35(2), 369–398.
Scott, L.O., 1987, “Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application,” Journal of Financial Quantitative Analysis, 22, 419-438.
Zhang, P. G., 1998, “Exotic Options: a guide to second generation options”, 2nd Edition, World Scientific Publishing Company.
Zimmermann, H., 1996, “Constant Return Participating (CRP) Portfolio Insurance Strategies,” The Journal of Derivatives, 4(2), 80-88.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top