跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳逸勛
研究生(外文):Yi-shin Chen
論文名稱:腸炎弧菌FliG蛋白之研究
論文名稱(外文):Behavior of FliG in Vibrio parahaemolyticus
指導教授:黃顯宗黃顯宗引用關係
指導教授(外文):Hin-chung Wong
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:120
中文關鍵詞:環境壓力活而不長FliG 蛋白Switch complex細胞極性端鞭毛腸炎弧菌綠色螢光蛋白
外文關鍵詞:Vibrio parahaemolyticusGreen fluorescenceEnvironmental stressVBNCFliGSwitch complexPolarityPolar flagellum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:2
近年來,藉助螢光顯微鏡的發展與螢光蛋白質技術的改良,開始利用螢光技術觀察生物分子在原核生物中即時的分佈及作用情形,發現細胞質內有許多與真核細胞相似的系統,如細胞骨架系統(Cytoskeleton)、訊號傳遞系統等,進一步發現許多蛋白質在細胞內有其特殊的位置分佈(Localization),以執行相關的生命功能。本篇研究目標就是探討端鞭毛形成初期的組成蛋白FliG,探討FliG在細胞不同生長時期在細胞內的分佈(Localization)行為(Behavior)。另外,前人研究指出受到一些環境壓力如飢餓、活而不長狀態(VBNC),或化學物處理如A22等,腸炎弧菌會從桿狀變成圓形,因此我們也想瞭解在環境壓力處理形成的圓形或回復後的桿狀細胞在轉換期中,FliG在細胞中的行為表現,及FliG表現與實際細胞鞭毛形成的相關性。我們以綠色螢光蛋白(GFP)與我們的目標蛋白FliG做N端連結,建立具有強啟動子(PA1/04/03)的低拷貝數質體(Low copy numbers plasmid),做成pSC31,放入腸炎弧菌中表現,以螢光顯微鏡來觀察FliG的行為。本篇研究發現FliG在細胞中會隨著不同的細胞時期或壓力產生聚集、分散、甚至是移動的現象。我們同時以RT-PCR來測定fliG及其他鞭毛構成蛋白質,fliF(Basal body)、flgE (Hook)、flaA (Flagellin)等在細胞週期及不同環境壓力下及回復時的基因表現。配合上電子顯微鏡的結果,我們發現野生株VP1137(Wild type)在Log phase與Stationary phase都有鞭毛的形成,在培養三天的Prolong stationary phase有兩種不同形式的菌體,一為小而黑色不具鞭毛的菌體,另一則是膨大而具有鞭毛的菌體,並且在膨大菌體上有許多類似囊泡(Vesicle)的突起。在飢餓的條件下,菌體逐漸接近球形,直到處理三天後的樣本依然具有鞭毛,RT-PCR結果亦支持顯微鏡的觀察。在生長對數期觀察轉殖株VP1137sc31的GFP-FliG訊號時發現其具有移動且有時會有兩個聚集的現象,在電子顯微鏡的觀察上我們發現加入質體的菌體中有一個到兩個端鞭毛。我們在RT-PCR結果顯示fliG與fliF會有輕微過量表現(Mild overexpression)的現象。不論是VP1137或是VP1137sc31,其鞭毛的形成位置似乎都會隨著細胞週期改變位置,除了大部分會出現在端點外,也有一部份會出現在1/4、1/2的位置,但是出現時大部分都是在細胞分裂的過程前期,最後會形成兩端都具有鞭毛的細胞,這與我們在GFP-FliG上的觀察相似。GFP-FliG在細胞中為自我聚集(Self-assembly)成鞭毛的樞紐(Switch) ,研究中顯示GFP-FliG聚集平時穩定的存在於細胞端點,但在細胞分裂時往細胞中間移動,在新GFP-FliG聚集形成後,又回到端點。MreB在細菌中決定很多蛋白質的特殊位置,我們使用MreB去聚集化(depolymerize)的試劑A22,處理VP1137sc31發現並不會影響到GFP-FliG spot的端性(polarity),顯示MreB 並不參與決定GFP-FliG spot的端性分佈。穿透式電子顯微鏡的結果也顯示細菌的鞭毛會有移動的現象,但是如何移動,及新的鞭毛何時形成,皆有待進一步探討。
Prokaryotic cells are similar to eukaryotic cells and have same mechanisms or molecular behaviors in cytoplasm. The most frequently studied topics are cytoskeletons and pathogenesis related proteins in prokaryotic cell. There are distinguished polarity marker proteins of polar flagella or pili, but relative few researches have been reported. In this study, we aimed on FliG, the early stage protein of polar flagellum formation, as a localization marker. FliG is switch complex of the basal body of polar flagellum in Vibrio parahaemolyticus and plays a key function for the polar flagellum. It accepts signals or energy from chemotaxis signaling protein, fixes basal body with stator protein, and becomes a rotor protein at the same time. The polar flagellum proteins could target to cell pole. FliG in a polar flagellum is then a distinct marker of cell polarity. FliG is secondary stage protein of polar flagellum assembly. The self-assembly mechanism of switch complex (FliG) and its duplication is unclear. We constructed a functional GFP-FliG fusion protein and visualized the behavior of FliG in time course or time lapse ways by fluorescence microscopy. We induced the rod shape cell to become spherical and then recovered, and the behavior of GFP-FliG was observed. GFP-FliG cluster was movable in cells in the division stage, and assembled and disassembled during different stages of the life cycle or under stresses. GFP-FliG showed characteristic polar localization regardless about the change of cell shape, unless the cell was in the division stage. When cells were treated under stress for a long period, the GFP-FliG cluster disassembled. Cells grown in rich medium, GFP-FliG showed smear expression and then spot formed in the centric or eccentric positions, and eventually moved to the pole. We treated cells with A22, an inhibitor of MreB and examined the changes of GFP-FliG. The treated cells became spherical shape while the polar localization of the GFP-FliG clusters was not disturbed. The results showed that MreB was not associated in the movement and localization of GFP-FliG. Reverse transcription- Polymerase Chain Reaction and electron microscopy experiments revealed that FliG behavior was closely related to the expression of polar flagellum in different growth phases and in starvation state. Cells with GFP-FliG gene (VP1137sc31), showed one or two GFP-GFP clusters and same numbers of polar flagellum in exponential phase as observed by TEM. Reverse transcription- Polymerase Chain Reaction revealed that gfp-fliG and gfp-fliF exhibited mild over expression as compared to fliG and fliF. In wild type cells, the polar flagella were not always in the polar position. Some of these flagella shifted to other positions in early stage during cell division, and then two polar flagella were found in opposite poles in late stage. The mechanism of the formation and movement of FliG cluster and polar flagellum need further exploration.
TABLE OF CONTENTS


TABLE OF CONTENTS I
LIST OF TABLES IV
LIST OF FIGURES V
LIST OF SUPPLEMENTARY DATA VIII
中文摘要 1
ABSTRACT 3
INTRODUCTION 5
I. Polarity in bacteria 6
Oscillation causes bipolar localization 8
Polarity determinates by protease 8
Preposition hypothesis 9
Birth scar 9
A. MreB, a determinant of protein localization 10
B. Flagellum localization in Caulobacter crescentus 11
II. Stress adaptation 13
A. Shape determinate 13
B. Stresses influence cell shape 15
Sporulation 15
Filamentations 15
Miniaturization 16
III. Studies on Flagella 18
A. Polar Flagella 19
Flagellar filament 19
Hook 20
Sheath 20
Basal body 21
The Switch 22
B. Chemotaxis system and flagellar basal body 22
C. FlhF-FlhG pair adjusts polar flagellum formation 24
IV. Vibrio parahaemolyticus 26
A. Basic characteristics of Vibrio parahaemolyticus 26
B. Polar flagellum in Vibrio parahaemolyticus 27
OBJECTIVE OF STUDY 29
MATERIALS AND METHODS 30
Bacterial strains and growth conditions 30
Plasmid construction 31
Transformation of pSC31 into E. coli XL1-Blue 32
Transformation of pSC31 into E. coli s17 λpir by electroporation 33
ECSsc31 conjugated to V. parahaemolyticus 1137 33
Preparation of cells for microscopy 34
Image Acquisition and Processing 35
Time-Lapse Imaging 36
Polar flagellum staining by Alexa Fluor 532 36
Transmission electron microscopy 37
A22 treatment 38
Cell membrane stain 38
VAN-FL staining 38
Reverse transcription-polymerase chain reaction (RT-PCR) 39
RNA purification 39
Elimination of contaminating DNA 40
RNA quantitative determination 40
Reverse transcription 40
PCR procedure 41
RESULT 42
Basic study on GFP-FliG contained strain 42
Behavior of GFP-FliG 46
Cell cycle 46
GFP-FliG behavior in cells under stress 46
GFP-FliG behavior in cells recovered from stress 47
Factors controlling the FliG assembly 48
DISCUSSION 50
GFP-FliG roles in Vibrio parahaemolyticus 1137sc31 50
GFP-FliG behavior in Vibrio parahaemolyticus 1137sc31 51
Probable mechanism of switch complex formation in Vibrio parahaemolyticus 53
MS ring, switch complex, and C ring interaction 54
FliG polarity was not determined by MreB 56
Conclusion 57
REFERENCE 58




LIST OF TABLES


Table1. Bacterial strains used in this study. 71
Table 2. Plasmids used in this study. 72
Table 3. Primers used in this study. 73
Table 4. Cell morphology and fluorescence pattern of Vibrio parahaemolyticus 1137sc31 in nutrition broth. 74
Table 5. Cell morphology and fluorescence pattern of Vibrio parahaemolyticus 1137sc31 starved in MMS- 0.5% NaCl for different intervals. 75
Table 6. Cell morphology and fluorescence pattern of Vibrio parahaemolyticus 1137sc31 induced into VBNC state. 76













LIST OF FIGURES


Fig. 1 Polar flagellum patterns in Vibrio parahaemolyticus 1137 observed by TEM examination. 77
Fig. 2 Relative expression levels of fliG, fliF, flgE and flaA genes in Vibrio parahaemolyticus 1137 detected by RT-PCR. 78
Fig. 3 fliG expression was determined by RT-PCR in Vibrio parahaemolyticus 1137 under different treatments. 79
Fig. 4 fliF expression was determined by RT-PCR in Vibrio parahaemolyticus under different treatments. 80
Fig. 5 flgE expression was determined by RT-PCR in Vibrio parahaemolyticus under different treatments. 81
Fig.6 flaA expression was determined by RT-PCR in Vibrio parahaemolyticus under different treatments. 82
Fig. 7 Polar flagellum pattern observed in Vibrio parahaemolyticus 1137 by TEM. 83
Fig. 8 pSC31 construction map. 84
Fig. 9 GFP-FliG 3D structure analysis 85
Fig. 10 fliG expression level was determined by RT-PCR in Vibrio parahaemolyticus under different treatments. 86
Fig. 11 fliF expression level was determined by RT-PCR in Vibrio parahaemolyticus under different treatments. 87
Fig. 12 Polar flagellum pattern was observed in Vibrio parahaemolyticus 1137sc31 by TEM examination. 88
Fig. 13 (A) Flagellum stain of Vibrio parahaemolyticus 1137sc31 by Alexa flour 532. (B) GFP-FliG localization (log phase) of Vibrio parahaemolyticus 1137sc31. 89
Fig. 14 Growth curve of Vibrio parahaemolyticus 1137 (○) and VP1137sc31 (●) in LB-3% NaCl, and VP1137sc31 added Kanamycin 300-μg/ml. 90
Fig. 15 Behavior of GFP-FliG during cell division in Vibrio parahaemolyticus 1137sc31. 91
Fig. 16 Time course of GFP-FliG in Vibrio parahaemolyticus 1137sc31 cultured in LB-3% NaCl and Kanamycin 300-μg/ml. 92
Fig. 17 Movement of GFP-FliG spots in Vibrio parahaemolyticus 1137sc31in different stages of the cell cycle. 93
Fig. 18 Localization of GFP-FliG in starved Vibrio parahaemolyticus 1137sc31 cells. 94
Fig. 19 Induction of Vibrio parahaemolyticus 1137(○) and Vibrio parahaemolyticus 1137sc31 (●) induced into VBNC state. 95
Fig. 20 GFP-FliG spot pattern change of Vibrio parahaemolyticus 1137sc31 cell in VBNC state. 96
Fig. 21-1 One spot GFP-FliG patterns at cell shape transition in Vibrio parahaemolyticus 1137sc31. 97
Fig. 21-2 Two spots GFP-FliG patterns at cell shape transition in Vibrio parahaemolyticus 1137sc31. 98
Fig. 22 GFP-FliG behavior was observed during the recovery of stationary phase spherical cells of Vibrio parahaemolyticus 1137sc31. 99
Fig. 23 Association of the GFP-FliG was located with the change of cell shape in Vibrio parahaemolyticus 1137sc31. 100
Fig. 24 GFP-FliG spot pattern was related to new growth direction in Vibrio parahaemolyticus 1137sc31. 101
Fig. 25-1 GFP-FliG localized in Vibrio parahaemolyticus 1137sc31 cells treated by different level of A22 for different intervals. 102
Fig. 25-2 GFP-FliG localized in Vibrio parahaemolyticus 1137sc31 cells treated by different level of A22 for different intervals. 103
Fig. 25-3 GFP-FliG localized observed in Vibrio parahaemolyticus 1137sc31 cells treated with A22 10-μg/ml at 37℃ for 1h. 104
Fig. 26 Van-FL stained Bacillus subtilis BCRC10255 and Vibrio parahaemolyticus 1137 by published method showing the new born cell wall patterns(Daniel and Errington, 2003). 105
Fig. 27 Van-FL stained Vibrio parahaemolyticus 1137 by our modified method to show the new born cell wall patterns. 106
Fig. 28 Van-FL stained Vibrio parahaemolyticus 1137 by our modified method to show the new born cell wall patterns of the VBNC recovered cells. 107













LIST OF SUPPLEMENTARY DATA

Supplementary Table 1. Examples of bacterial proteins that localize to the cell pole (Lybarger and Maddock, 2001). 108
Supplementary Figure 1. Graphical Overview of the Model for TipN and TipF Function at the Division Plane and the Newborn Pole. 109
Supplementary Figure 2. Morphogenetic pathway for the flagellum of Salmonella. 110
Supplementary Figure 3. YFP-MreB localization treated with A22. 111
Alba,B.M., Leeds,J.A., Onufryk,C., Lu,C.Z., and Gross,C.A. (2002). DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev. 16, 2156-2168.
Aldea,M., Hernandez-Chico,C., de la Campa,A.G., Kushner,S.R., and Vicente,M. (1988). Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J. Bacteriol. 170 , 5169-5176.
Aldea,M., Garrido,T., Hernandez-Chico,C., Vicente,M., and Kushner,S.R. (1989). Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J. 8, 3923-3931.
Allen,R.D. and Baumann,P. (1971). Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J. Bacteriol. 107, 295-302.
Alon,U., Camarena,L., Surette,M.G., Arcas,B., Liu,Y., Leibler,S., and Stock,J.B. (1998). Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238-4248.
Andersen,J.B., Sternberg,C., Poulsen,L.K., Bjorn,S.P., Givskov,M., and Molin,S. (1998). New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Appl. Environ. Microbiol. 64, 2240-2246.
Atsumi,T., McCarter,L., and Imae,Y. (1992). Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182-184.
Bren,A. and Eisenbach,M. (2000). How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation. Journal of Bacteriology 182, 6865-6873.
Bren,A. and Eisenbach,M. (1998). The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J. Mol. Biol. 278, 507-514.
Brown,P.N., Hill,C.P., and Blair,D.F. (2002). Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. Embo Journal 21, 3225-3234.
Bilwes,A.M., Alex,L.A., Crane,B.R., and Simon,M.I. (1999). Structure of CheA, a signal-transducing histidine kinase. Cell 96 , 131-141.
Burger,A., Sichler,K., Kelemen,G., Buttner,M., and Wohlleben,W. (2000). Identification and characterization of the mre gene region of Streptomyces coelicolor A3(2). Mol. Gen. Genet. 263, 1053-1060.
Button,J.E., Silhavy,T.J., and Ruiz,N. (2006). A suppressor of cell death caused by the loss of {sigma}E downregulates extracytoplasmic stress responses and outer membrane vesicle production in Escherichia coli. J. Bacteriol.
Borkovich,K.A., Kaplan,N., Hess,J.F., and Simon,M.I. (1989). Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. U. S. A 86, 1208-1212.
Borkovich,K.A. and Simon,M.I. (1990). The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63, 1339-1348.
Charles,M., Perez,M., Kobil,J.H., and Goldberg,M.B. (2001). Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio. Proc. Natl. Acad. Sci. U. S. A 98, 9871-9876.
Cabanillas-Beltran,H., Llausas-Magana,E., Romero,R., Espinoza,A., Garcia-Gasca,A., Nishibuchi,M., Ishibashi,M., and Gomez-Gil,B. (2006). Outbreak of gastroenteritis caused by the pandemic Vibrio parahaemolyticus O3: K6 in Mexico. Fems Microbiology Letters 265, 76-80.
Chiu,S.W. 2005. Cytoskeleton of Vibrio parahaemolyticus. Master thesis, Soochow University, Taipei, Taiwan.
Djordjevic,S. and Stock,A.M. (1998). Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. J. Struct. Biol. 124, 189-200.
Divakaruni,A.V., Loo,R.R., Xie,Y., Loo,J.A., and Gober,J.W. (2005). The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus. Proc. Natl. Acad. Sci. U. S. A 102, 18602-18607.
Elliot,M.A., Karoonuthaisiri,N., Huang,J., Bibb,M.J., Cohen,S.N., Kao,C.M., and Buttner,M.J. (2003). The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17, 1727-1740.
Errington,J., Daniel,R.A., and Scheffers,D.J. (2003). Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52-65, table.
Francis,N.R., Irikura,V.M., Yamaguchi,S., DeRosier,D.J., and Macnab,R.M. (1992). Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc. Natl. Acad. Sci. U. S. A 89, 6304-6308.
Francis,N.R., Sosinsky,G.E., Thomas,D., and DeRosier,D.J. (1994). Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235, 1261-1270.
Falke,J.J., Bass,R.B., Butler,S.L., Chervitz,S.A., and Danielson,M.A. (1997). The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457-512.
Farmer,J.J., III, Hickman-Brenner,F.W., Fanning,G.R., Gordon,C.M., and Brenner,D.J. (1988). Characterization of Vibrio metschnikovii and Vibrio gazogenes by DNA-DNA hybridization and phenotype. J. Clin. Microbiol. 26, 1993-2000.
Fiedler,S. and Wirth,R. (1988). Transformation of bacteria with plasmid DNA by electroporation. Anal. Biochem. 170, 38-44.
Figge,R.M., Divakaruni,A.V., and Gober,J.W. (2004). MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51, 1321-1332.
Fuenzalida,L., Hernandez,C., Toro,J., Rioseco,M.L., Romero,J., and Espejo,R.T. (2006). Vibrio parahaemolyticus in shellfish and clinical samples during two large epidemics of diarrhoea in southern Chile. Environmental Microbiology 8, 675-683.
Fouz,B., Toranzo,A.E., Marco-Noales,E., and Amaro,C. (1998). Survival of fish-virulent strains of Photobacterium damselae subsp. damselae in seawater under starvation conditions. FEMS Microbiol. Lett. 168 , 181-186.
Graumann,P.L. and Losick,R. (2001). Coupling of asymmetric division to polar placement of replication origin regions in Bacillus subtilis. J. Bacteriol. 183, 4052-4060.
Gitai,Z., Dye,N., and Shapiro,L. (2004). An actin-like gene can determine cell polarity in bacteria. Proc. Natl. Acad. Sci. U. S. A 101, 8643-8648.
Gonzalez-Escalona,N., Cachicas,V., Acevedo,C., Rioseco,M.L., Vergara,J.A., Cabello,F., Romero,J., and Espejo,R.T. (2005). Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004. Emerging Infectious Diseases 11, 129-131.
Harry,E.J. and Wake,R.G. (1997). The membrane-bound cell division protein DivIB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 25, 275-283.
Hess,J.F., Bourret,R.B., and Simon,M.I. (1988). Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336, 139-143.
Hess,J.F., Bourret,R.B., Oosawa,K., Matsumura,P., and Simon,M.I. (1988). Protein phosphorylation and bacterial chemotaxis. Cold Spring Harb. Symp. Quant. Biol. 53 Pt 1, 41-48.
Hess,J.F., Oosawa,K., Kaplan,N., and Simon,M.I. (1988). Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53, 79-87.
Hild,E., Takayama,K., Olsson,R.M., and Kjelleberg,S. (2000). Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14. J. Bacteriol. 182, 6964-6974.
Hurley,C.C., Quirke,A., Reen,F.J., and Boyd,E.F. (2006). Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7, 104.
Huang,K.C. and Wingreen,N.S. (2004). Min-protein oscillations in round bacteria. Phys. Biol. 1, 229-235.
Huitema,E., Pritchard,S., Matteson,D., Radhakrishnan,S.K., and Viollier,P.H. (2006). Bacterial birth scar proteins mark future flagellum assembly site. Cell 124, 1025-1037.
Howard,M. (2004). A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335, 655-663.
Iniesta,A.A., McGrath,P.T., Reisenauer,A., McAdams,H.H., and Shapiro,L. (2006). A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc. Natl. Acad. Sci. U. S. A 103, 10935-10940.
Islam,M.S., Tasmin,R., Khan,S.I., Bakht,H.B.M., Mahmood,Z.H., Rahman,M.Z., Bhuiyan,N.A., Nishibuchi,M., Nair,G.B., Sack,R.B., Huq,A., Colwell,R.R., and Sack,D.A. (2004). Pandemic strains of O3 : K6 Vibrio parahaemolyticus in the aquatic environment of Bangladesh. Canadian Journal of Microbiology 50, 827-834.
Iwai,N., Nagai,K., and Wachi,M. (2002). Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci. Biotechnol. Biochem. 66, 2658-2662.
Jones,C.J., Macnab,R.M., Okino,H., and Aizawa,S. (1990). Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212, 377-387.
Joseph,S.W., Colwell,R.R., and Kaper,J.B. (1982). Vibrio parahaemolyticus and related halophilic Vibrios. Crit Rev. Microbiol. 10, 77-124.
Khan,S., Zhao,R., and Reese,T.S. (1998). Architectural features of the Salmonella typhimurium flagellar motor switch revealed by disrupted C-rings. J. Struct. Biol. 122, 311-319.
Kjelleberg,S., Albertson,N., Flardh,K., Holmquist,L., Jouper-Jaan,A., Marouga,R., Ostling,J., Svenblad,B., and Weichart,D. (1993). How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek 63, 333-341.
Klose,K.E. and Mekalanos,J.J. (1998). Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180, 303-316.
Kruse,T., Bork-Jensen,J., and Gerdes,K. (2005). The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78-89.
Karunakaran,R., Mauchline,T.H., Hosie,A.H., and Poole,P.S. (2005). A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in Gram-negative bacteria. Microbiology 151, 3249-3256.
Kerr,R.A., Levine,H., Sejnowski,T.J., and Rappel,W.J. (2006). Division accuracy in a stochastic model of Min oscillations in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 103, 347-352.
Kim,Y.K. and McCarter,L.L. (2000). Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 182, 3693-3704.
Kim,K.K., Yokota,H., and Kim,S.H. (1999). Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787-792.
Kuo,S.C. and Koshland,D.E., Jr. (1989). Multiple kinetic states for the flagellar motor switch. J. Bacteriol. 171, 6279-6287.
Lloyd,S.A., Whitby,F.G., Blair,D.F., and Hill,C.P. (1999). Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400, 472-475.
Lam,H., Schofield,W.B., and Jacobs-Wagner,C. (2006). A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124, 1011-1023.
Laohaprertthisan,V., Chowdhury,A., Kongmuang,U., Kalnauwakul,S., Ishibashi,M., Matsumoto,C., and Nishibuchi,M. (2003). Prevalence and serodiversity of the pandemic clone among the clinical strains of Vibrio parahaemolyticus isolated in southern Thailand. Epidemiology and Infection 130, 395-406.
Levit,M.N., Liu,Y., and Stock,J.B. (1998). Stimulus response coupling in bacterial chemotaxis: receptor dimers in signalling arrays. Mol. Microbiol. 30, 459-466.
Lux,R., Kar,N., and Khan,S. (2000). Overproduced Salmonella typhimurium flagellar motor switch complexes. J. Mol. Biol. 298, 577-583.
Lybarger,S.R. and Maddock,J.R. (2001). Polarity in action: asymmetric protein localization in bacteria. J. Bacteriol. 183, 3261-3267.
Lowder,B.J., Duyvesteyn,M.D., and Blair,D.F. (2005). FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. Journal of Bacteriology 187, 5640-5647.
Martinez-Urtaza,J., Simental,L., Velasco,D., Depaola,A., Ishibashi,M., Nakaguchi,Y., Nishibuchi,M., Carrera-Flores,D., Rey-Alvarez,C., and Pousa,A. (2005). Pandemic Vibrio parahalemolyticus O3 : K6, Europe. Emerging Infectious Diseases 11, 1319-1320.
Marykwas,D.L. and Berg,H.C. (1996). A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli. J. Bacteriol. 178, 1289-1294.
Marykwas,D.L., Schmidt,S.A., and Berg,H.C. (1996). Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast. J. Mol. Biol. 256, 564-576.
Mattick,K.L., Jorgensen,F., Legan,J.D., Cole,M.B., Porter,J., Lappin-Scott,H.M., and Humphrey,T.J. (2000). Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity. Appl. Environ. Microbiol. 66, 1274-1279.
Matsumoto,C., Okuda,J., Ishibashi,M., Iwanaga,M., Garg,P., Rammamurthy,T., Wong,H.C., Depaola,A., Kim,Y.B., Albert,M.J., and Nishibuchi,M. (2000). Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses
M2000. J. Clin. Microbiol. 38, 578-585.
Macnab,R.M. (2003). How bacteria assemble flagella. Annual Review of Microbiology 57, 77-100.
MacAlister,T.J., Cook,W.R., Weigand,R., and Rothfield,L.I. (1987). Membrane-murein attachment at the leading edge of the division septum: a second membrane-murein structure associated with morphogenesis of the gram-negative bacterial division septum. J. Bacteriol. 169, 3945-3951.
Minamino,T., Gonzalez-Pedrajo,B., Yamaguchi,K., Aizawa,S.I., and Macnab,R.M. (1999). FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol. Microbiol. 34, 295-304.
Murray,T.S. and Kazmierczak,B.I. (2006). FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188, 6995-7004.
McBroom,A.J., Johnson,A.P., Vemulapalli,S., and Kuehn,M.J. (2006). Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 188, 5385-5392.
McBroom,A.J. and Kuehn,M.J. (2007). Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545-558.
McCarter,L., Hilmen,M., and Silverman,M. (1988). Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54, 345-351.
McCarter,L. and Silverman,M. (1989). Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J. Bacteriol. 171, 731-736.
McCarter,L. and Silverman,M. (1989). Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J. Bacteriol. 171, 731-736.
McCarter,L. (1999). The multiple identities of Vibrio parahaemolyticus. J. Mol. Microbiol. Biotechnol. 1, 51-57.
McCarter,L.L. (2001). Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65, 445-62, table.
McCarter,L.L. (1995). Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177, 1595-1609.
McCarter,L.L. and Wright,M.E. (1993). Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J. Bacteriol. 175, 3361-3371.
McGee,K., Horstedt,P., and Milton,D.L. (1996). Identification and characterization of additional flagellin genes from Vibrio anguillarum. J. Bacteriol. 178, 5188-5198.
Morehouse,K.A., Goodfellow,I.G., and Sockett,R.E. (2005). A chimeric N-terminal Escherichia coli C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E coli flagellar rotation and chemotaxis. Journal of Bacteriology 187, 1695-1701.
Nilsen,T., Yan,A.W., Gale,G., and Goldberg,M.B. (2005). Presence of multiple sites containing polar material in spherical Escherichia coli cells that lack MreB. J. Bacteriol. 187 , 6187-6196.
Novitsky,J.A. and Morita,R.Y. (1977). Survival of a Psychrophilic Marine Vibrio Under Long-Term Nutrient Starvation. Appl. Environ. Microbiol. 33, 635-641.
Oliver,J.D. (2005). The viable but nonculturable state in bacteria. J. Microbiol. 43 Spec No, 93-100.
O'Toole,G., Kaplan,H.B., and Kolter,R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology 54, 49-79.
Oosawa,K., Ueno,T., and Aizawa,S. (1994). Overproduction of the bacterial flagellar switch proteins and their interactions with the MS ring complex in vitro. J. Bacteriol. 176, 3683-3691.
Paul,R., Weiser,S., Amiot,N.C., Chan,C., Schirmer,T., Giese,B., and Jenal,U. (2004). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18, 715-727.
Pichereau,V., Hartke,A., and Auffray,Y. (2000). Starvation and osmotic stress induced multiresistances. Influence of extracellular compounds. Int. J. Food Microbiol. 55, 19-25.
Pogliano,J., Osborne,N., Sharp,M.D., banes-De,M.A., Perez,A., Sun,Y.L., and Pogliano,K. (1999). A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1149-1159.
Quilici,M.L., Robert-Pillot,A., Picart,J., and Fournier,J.M. (2005). Pandernic Vibrio parahaemolyticus O3 : K6 spread, France. Emerging Infectious Diseases 11, 1148-1149.
Rafelski,S.M. and Theriot,J.A. (2005). Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility. Biophys. J. 89, 2146-2158.
Ryan,K.R., Huntwork,S., and Shapiro,L. (2004). Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. Proc. Natl. Acad. Sci. U. S. A 101, 7415-7420.
Shapiro,L., McAdams,H.H., and Losick,R. (2002). Generating and exploiting polarity in bacteria. Science 298, 1942-1946.
Shih,Y.L., Kawagishi,I., and Rothfield,L. (2005). The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Molecular Microbiology 58, 917-928.
Shih,Y.L., Le,T., and Rothfield,L. (2003). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl. Acad. Sci. U. S. A 100, 7865-7870.
Slovak,P.M., Porter,S.L., and Armitage,J.P. (2006). Differential localization of Mre proteins with PBP2 in Rhodobacter sphaeroides. J. Bacteriol. 188, 1691-1700.
Slovak,P.M., Wadhams,G.H., and Armitage,J.P. (2005). Localization of MreB in Rhodobacter sphaeroides under conditions causing changes in cell shape and membrane structure. J. Bacteriol. 187, 54-64.
Sanders,D.A., Gillece-Castro,B.L., Stock,A.M., Burlingame,A.L., and Koshland,D.E., Jr. (1989). Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264, 21770-21778.
Simon,L.D., Randolph,B., Irwin,N., and Binkowski,G. (1983). Stabilization of proteins by a bacteriophage T4 gene cloned in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 80, 2059-2062.
Scharf,B. (2002). Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J. Bacteriol. 184, 5979-5986.
Scott,M.E., Dossani,Z.Y., and Sandkvist,M. (2001). Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc. Natl. Acad. Sci. U. S. A 98, 13978-13983.
Sockett,H., Yamaguchi,S., Kihara,M., Irikura,V.M., and Macnab,R.M. (1992). Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J. Bacteriol. 174, 793-806.
Thorsen,B.K., Enger,O., Norland,S., and Hoff,K.A. (1992). Long-term starvation survival of Yersinia ruckeri at different salinities studied by microscopical and flow cytometric methods. Appl. Environ. Microbiol. 58, 1624-1628.
Thomas,D., Morgan,D.G., and DeRosier,D.J. (2001). Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants. J. Bacteriol. 183, 6404-6412.
Turner,L., Ryu,W.S., and Berg,H.C. (2000). Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793-2801.
Tsai,J.W. and Alley,M.R.K. (2001). Proteolysis of the Caulobacter McpA Chemoreceptor Is Cell Cycle Regulated by a ClpX-Dependent Pathway. J. Bacteriol. 183, 5001-5007.
Viollier,P.H., Sternheim,N., and Shapiro,L. (2002). A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. EMBO J. 21, 4420-4428.
Viollier,P.H., Sternheim,N., and Shapiro,L. (2002). Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc. Natl. Acad. Sci. U. S. A 99, 13831-13836.
Viollier,P.H. and Shapiro,L. (2003). A lytic transglycosylase homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole. Mol. Microbiol. 49, 331-345.
Ward,J.E., Jr. and Lutkenhaus,J. (1985). Overproduction of FtsZ induces minicell formation in E. coli. Cell 42, 941-949.
Wai,S.N., Mizunoe,Y., and Yoshida,S. (1999). How Vibrio cholerae survive during starvation. FEMS Microbiol. Lett. 180, 123-131.
Wainwright,M., Canham,L.T., al-Wajeeh,K., and Reeves,C.L. (1999). Morphological changes (including filamentation) in Escherichia coli grown under starvation conditions on silicon wafers and other surfaces. Lett. Appl. Microbiol. 29, 224-227.
Wachi,M., Doi,M., Okada,Y., and Matsuhashi,M. (1989). New mre genes mreC and mreD, responsible for formation of the rod shape of Escherichia coli cells. J. Bacteriol. 171, 6511-6516.
Wagner,J.K., Galvani,C.D., and Brun,Y.V. (2005). Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J. Bacteriol. 187, 544-553.
Welch,M., Oosawa,K., Aizawa,S.I., and Eisenbach,M. (1994). Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Biochemistry 33, 10470-10476.
Welch,M., Oosawa,K., Aizawa,S., and Eisenbach,M. (1993). Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl. Acad. Sci. U. S. A 90, 8787-8791.
Wolanin,P.M. and Stock,J.B. (2004). Bacterial chemosensing: cooperative molecular logic. Curr. Biol. 14, R486-R487.
Wong,H.C., Shen,C.T., Chang,C.N., Lee,Y.S., and Oliver,J.D. (2004). Biochemical and virulence characterization of viable but nonculturable cells of Vibrio parahaemolyticus. J. Food Prot. 67, 2430-2435.
Wong,H.C., Wang,P., Chen,S.Y., and Chiu,S.W. (2004). Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol. Lett. 233, 269-275.
Wong,H.C. and Wang,P. (2004). Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. J. Appl. Microbiol. 96, 359-366.
Wong,H.C., Chen,C.H., Chung,Y.J., Liu,S.H., Wang,T.K., Lee,C.L., Chiou,C.S., Nishibuchi,M., and Lee,B.K. (2005). Characterization of new O3:K6 strains and phylogenetically related strains of Vibrio parahaemolyticus isolated in Taiwan and other countries. J. Appl. Microbiol. 98, 572-580.
Yamaguchi,S., Fujita,H., Ishihara,A., Aizawa,S., and Macnab,R.M. (1986). Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J. Bacteriol. 166, 187-193.
Yakushi,T., Yang,J.H., Fukuoka,H., Homma,M., and Blair,D.F. (2006). Roles of charged residues of rotor and stator in flagellar rotation: Comparative study using H+-driven and Na+-driven motors in Escherichia coli. Journal of Bacteriology 188, 1466-1472.
Yorimitsu,T., Mimaki,A., Yakushi,T., and Homma,M. (2003). The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. Journal of Molecular Biology 334, 567-583.
Zhao,R., Amsler,C.D., Matsumura,P., and Khan,S. (1996). FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies. J. Bacteriol. 178, 258-265.
Zhao,R., Pathak,N., Jaffe,H., Reese,T.S., and Khan,S. (1996). FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J. Mol. Biol. 261, 195-208.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top