跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛琍文
研究生(外文):Li-Wen Hsueh
論文名稱:北台灣不同水體中紫色非硫菌之多樣性分析
論文名稱(外文):Diversity of purple non-sulfur bacteria in different aqueous phase of northern Taiwan
指導教授:趙維良趙維良引用關係
指導教授(外文):Wei-Liang Chao
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:95
中文關鍵詞:紫色非硫菌多樣性分析
外文關鍵詞:purple-nonsulfur bacteriadiveristy16S-23S ISR region
相關次數:
  • 被引用被引用:1
  • 點閱點閱:634
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紫色非硫菌為一群行厭氧光合作用的微生物,在不同的環境可進行不同之代謝模式包含:光合自營、光合異營、化學異營及化學自營。由於這類細菌的特殊生理特性,近年來受到科學家高度的重視。它們廣布於自然界,包含湖泊、水塘、海洋及一些水田等等。
由北台灣淡鹽水體當中篩出39株菌種,探討它們外形上的多樣性:菌體形態、菌液顏色與菌落外觀,以及16S-23S ribosomal intergenic spacer region(ISR)序列的多樣性並加以分類。首先,將它們分成七種不同的菌體形態:球狀、卵形、環形、馬蹄形、及三種不同大小的桿狀,菌液顏色有褐色、紫色、粉紅色及咖啡色等;而菌落外觀為圓形,表面光滑,邊緣平整。再分別依每個不同的菌體觀察其菌液顏色及菌落形態的不同,共分成26類。將26類的代表菌株進行16S rRNA序列的分析,經親緣關係比對結果皆大於99%,表示這26株菌種皆為紫色非硫菌,主要屬於Rhodobacter sphaeroides、Rhodovulum sulfidophilum及Rhodopseudomonas sp.三個屬,且這三個屬的菌株所呈現的外觀形態有高度的多樣性。另一方面,利用PCR增幅此39株菌種的16S-23S ISR片段,再以PvuII、AluI及HaeIII三種酵素作用,會呈現22種RFLP圖譜,因此可分成22群。其中比對結果為Rba. sphaeroides及Rhodovulum sp. strain MB263分別產生7種與2種不同的圖譜,表示在這兩株菌的16S-23S ISR區域具有多樣性或者資料庫無法比對出此圖譜所相對應的菌種,而其他16S rRNA基因序列的比對結果相同的菌株皆能與圖譜的分群結果一致。因此利用16S-23S ISR-RFLP可輔助16S rRNA基因序列比對,建立出一個分類並鑑定紫色非硫菌的系統。
Purple non-sulfur bacteria are a group of extraordinary metabolic
diverse bacteria. They can grow with photoautotroph, photoheterotroph, chemoheterotroph or chemoautotroph. Under various conditions, they can enjoy exceptional flexibility within each of these modes of metabolism. Due to the special physical characteristics properties, they had attracted scientist’s attention in resent years. These bacterias are widely distributed in nature such as lakes, water ponds, seas, or farm, etc. We isolated 39 strains bacteria from different aqueous phase of northern Taiwan. We discussed the diversity of their morphology and genetic diversity of their 16S-23S ribosomal intergenic spacer region(ISR) . First, dependent on cell shapes, we classed these strains into seven types: coccus, oval, ring, horse's hoof, and three size rods. Colors of their cell suspension are brown, pink, purple and red-brown, etc. Their cultural characteristics almost are circular forms , convex elevation and entire margins. Then, according to above characteristics, we classed 39 strains in to twenty-six clusters. Taking 16S rRNA sequence of these 26 representatives to blast with DataBank , the similarity all are larger than 99%,which reveals they were related to Rhodobacter sphaeroides, Rhodovulum sulfidophilum and Rhodopseudomonas sp. and revealed there were highly diversity of their morphology . In other hand, the16S-23S ISR of 39 strains were amplified by PCR and digested with PvuII, AluI, HaeIII, resulting in 22 RFLP profiles. This results showed that 39 purple nonsulfur bacterias could be classed into 22 groups. 16S-23S ISR-RFLP revealed that there was a genotype diversity within Rba. sphaeroides and Rhodovulum sp. strain MB263,which there were different 7 and 2 RFLP profiles respectively. This result showed that there was genotype diversity of 16S-23S ISR with both species ,or may that there was not enough database of 16S rRNA sequence in GenBank to blast accurately to the species. Hence, analysis of 16S-23S ISR-RFLP was more accurate than analysis of 16S rRNA sequences for identification of purple non-sulfur bacteria. By this method, 16S-23S ISR-RFLP, we can set up a characterization system of purple non-sulfur bacteria.
目錄
中文摘要................................................................................................I
英文摘要..............................................................................................III
目次......................................................................................................V
表次....................................................................................................VII
圖次...................................................................................................VIII
前言.......................................................................................................1
第一節、 紫色非硫菌之簡介................................................................1
第二節、 紫色非硫菌之應用................................................................2
第三節、 紫色非硫菌之生長條件與培養..............................................2
第四節、 紫色非硫菌之分類與多樣性…………………………………..6
第五節、 16S-23S ribosomal intergenic spacer region簡介與應用.........................................................................................8
第六節、 微生物產生PHA基因之研究..............................................10
材料方法..............................................................................................12
第一節、 材料與方法........................................................................12
第二節、 儀器設備............................................................................21
結果.....................................................................................................22
討論.....................................................................................................36
結論.....................................................................................................44
參考文獻..............................................................................................45
參考文獻
林秀萍.2004. 蓮池潭紫色不含硫光合菌之分類與特性探討。中山大學生命科學系碩士論文。

Berg, K.L., Squires, C., Squires, C.L.1989.Ribosomal RNA operon antitermination function of leader and spacer region box B-Box A sequences and their conservation in diverse microorganisms. J. Mol. Biol. 209:345-358

Bourcie,r D., Willems A., Laguerre, G., Gillis, M., De Lajudie, P. 2002. Genotypic characterization of Bradyrhizobium strains nodulating small senegalese legumes by 16S-23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl. Environ. Microbiol. 66:3987-3997

Chalker, V. J. and Brownlie, J. 2004. Taxonomy of the canine Mollicutes by 16S rRNA gene and 16S/23S rRNA intergenic spacer region sequence comparison. Int. J. Syst .Evol. Microbiol. 54: 537–542

Clayton, R. K. 1963. Toward the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta. 75:312-323

Condon, C., Squires, C., Squires, C.L., Manachini, P.L., Sorlini, C.1998. PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis. Int. J. Syst. Bacteriol. 48:107-116
Dryden,S.C. and Kaplan,S. 1990. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 18:7267–7277

Ensign, J. C. 1977. Biomass production from animal waste by photosynthetic bacteria. In: Microbiol energy conversion. Schlegel, H. G. and Barnea, J(eds.). Pergamon Press Ocford,pp. 455-482

Fessehaie, A., De Boer, S.H., Lévesque, C.A. 2002. Molecular characterization of DNA encoding 16S–23S rRNA intergenic spacer regions and 16S rRNA of pectolytic Erwinia species. Can. J. Microbiol. 48:387-398

Fulai, W. and Sang, Y. L. 1997. Poly(3-Hydroxybutyrate) Production with High Productivity and High Polymer Content by a Fed-Batch Culture of Alcaligenes latus under Nitrogen Limitation. Appl. Environ. Microbiol. 63: 3703–3706

Garcia-Martinez, J., Acinas, S.G., Anton, A.I., Rodriguez-Valera, F. 1999. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Meth.36: 55-64

Grundmann, G.L., Neyra, M., Normand, P. 2000.High-resolution phylogenetic analysis of NO2-oxidizing Nitrobacter species using the rrs-rrl IGS sequence and rrl genes. Int J Syst Evol Microbiol. 50:1893-1898

Gurtler, V. and Stanisich, A. 1996. New approaches to typing and Identification of bacteria using the 16S-23S rDNA spacer region. Microbiology.142:3-16

Hansen, T. A., and van Gemerden, H. 1972. Sulfide utilization by purple nonsulfur bacteria. Arch. Microbiol. 86:49–56.


Hansen, T.A. and Veldkamp, H. 1973. Rhodopseudomonas sulfidophila. Nov. spec., a new species of the purple nonsulfur bacteria. Arch. Mikrobiol.92:45-58

Hiraishi, A. 1999. Isoprenoid quinones as biomarkers of microbial populations in the environment. J. Biosci. Bioeng. 88:415-436.

Hiraishi, A. and Ueda, Y. 1994. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int. J. Syst. Bacteriol. 44:665–673.

Hochman, A., Figueredo, A. and Wall, J. 1992. Physiological function of hydroperoxidase in Rhodobacter capsulatus. J. Bacteriol. 174:3386-3391

Holm, H. W. and Vennes, J. W. 1971. Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl. Microbiol. 19:988-996

Huguet, V., Land, O. E., Casanova, G.J., Zimpfer, J. F. and Fernandez, M. P. 2005. Genetic diversity of Frankia microsymbionts from the relict species Myrica faya (Ait.) and Myrica rivas-martinezii (S.) in Canary Islands and Hawaii. Microb. Ecol. 49:617-625

Imhoff, J. F. and Madigan, M. T. 2004. Subcommittee on the taxonomy of phototrophic bacteria. Int. J. Syst. Evol. Micr. 54:1001–1003

Imhoff, J. F., and Trüper, H. G. 1984. Rearrangements of the species and genera of the phototrophic ”purple nonsulfur bacteria”. Int. J. Syst. Bacteriol. 34:340-343

Imhoff, J. F., and Trüper, H. G. 1989. The purple nonsulfur bacteria. In:Bergey's Manual of Systematic Bacteriology. Staley, J. T., Bryant, M. P.,Pfennig, N., and Holt, J. G. (eds.). Williams and Wilkins Baltimore, M. D.3:1658–1661.

Iwasaki, M. and Hiraishi , A. 1998. A new approach to numerical analyses of microbial quinone profiles in the environment. Microbes Environ. 13:67-76.

Jarabo-Lorenzo, A., Pérez-Galdona, R., Donate-Correa, J., Rivas, R., Velázquez, E., Hernández, M., Temprano, F., Martínez- Molina, E., Ruíz-Argüeso, T., León-Barrios, M. 2003. Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. System Appl. Microbiol. 26:611-623

Jensen, M.A., Webster, J.A., Straus, N.1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59: 945-952

Kabadjova, P., Dousset, X., Le Cam, V., Prevost, H. 2002. Differentiation of Closely Related Carnobacterium Food Isolates Based on 16S-23S Ribosomal DNA Intergenic Spacer Region Polymorphism. Appl. Environ. Microbiol. 68: 5358-5366

Kaiser, P. 1966. Contribution to the study of the ecology of photosynthetic bacteria. Ann Inst Pasteur.111:733-49.

Kamekura, M., Dyall-Smith, M., Upasani, V., Ventosa, A., Kates, M.1997. Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vaculatum comb. nov, Natrialba magadii comb. nov., and Natronomaonas pharaonis comb. nov., respectively. Int. J. Syst. Bacteriol. 47, 853-857

Klemme, J. H. 1968. Untersuchungen zur photoautotrophie mit molekularem wasserstoff bei neuisolierten schwefelfreien purpurbakterien. Arch. Microbiol. 64:29-42

Kondratieva, E. N. 1979. Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Microbial Biochemistry: International Review of Biochemistry. Quale, J. R.(ed.). University Park Press Baltimore, M.D.21:117-175

Lascelles, J.1959. Adaptation to form bacteriochlorophyll in Rhodopseudomonas spheroides: changes in activity of enzymes concerned in pyrrole synthesis. J. Biochem. 72:508

Madigan, M. T., and Gest, H. 1979. Growth of the photosynthetic bacterium Rhodopseudomonas capsulate chemoautotrophically in the darkness with H2 as energy source. J. Bacteriol. 137:524-530

Maeda, M. and Nogami, K.1989. Some aspects of the biocontrolling method in aquavulture. Biotechnology, Japan. Soc. Mar. Biotechnol. Tokyo, p. 395-9-398
McArthur, J. V., Kovacic D. A. , and Smith, M. H. 1988. Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc. Natl. Acad. Sci. USA 85:9621-9624

Neutzling. O., Imhoff, J.F. and Truper. 1984a .Rhodopseudomonas adriatica spec. nov., a new species of the Rhodospirillaceae. dependent on reduced sulfur compounds. Arch. Microbiol. 137: 256-261

Normand, P., Ponsonnet, C., Nesme, X., Neyra, M., Simonet, P.1996. ITS analysis of prokaryotes. In: Molecular microbial ecology Manual. 1-12

Okubo, Y., Futamata, H., Hiraishi, A. 2006. Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl. Environ. Microbiol. 72:6225-33.

Pérez-Luz, S., Rodríguez-Valera, F., Lan, R., and Reeves, P. R.1998. Variation of the ribosomal operon 16S-23S gene spacer region in representatives of Salmonella enterica subspecies. J. Bacteriol. 180:2144-2151

Pfennig, N. 1967. Photosynthetic bacteria. Ann. Rev. Microbiol.21:285-324

Pfennig, N. 1969. Rhodospeudomonas acidophila, sp., a new species of the budding purple nonsulfur bacteria. J. Bacteriol. 99:597-602

Pietro, C.and Angelo, S. 2001.Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor.J. biotechnol. 88:239-249

Qadri, S. M. H. and Hoare, D. S. 1968. Formic hydrogenlyase and the photoassimilation of formate by a strain of Rhodopseudomonas palustris. J. Bacteriol. 95:2344-2357

Ramsay, B. A., Lomaliza, K., Chavarie, C., Dube, B., Bataille, P. and Ramsay, J. A. 1990. Production of poly-(ß-hydroxybutyric-co-ß-hydroxyvaleric) acids. Appl .Environ. Microbiol. 56:2093-2098

Ranjard, L.,Brothier E., Nazaret, S. 2000. Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl. Environ. Microbiol. 66:5334-5339

Rehm, B. H. A. and Steinbüchel, A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25:3-19.

Riffard, S., Presti, F. L., Normand, P., Forey, F., Reyrolle, M., Etienne, J. and Vandenesch, F. 1998. Species identification of Legionella via intergenic 16S-23S ribosomal spacer PCR analysis. Int. J. Syst. Bacteriol. 48:723-730

Rodrigues, M.F., Valentin, H.E., Berger, P.A., Tran, M., Asrar, J., Gruys, K.J., Steinbuchel, A. 2000. Polyhydroxyalkanoate accumulation in Burkholderia sp.: a molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Appl. Microbiol. Biotechnol. 53:453-60.

Schlegel, H.G., Lafferty, R., Krauss, I. 1970 The isolation of mutants not accumulating poly-b-hydroxybutyric acid. Arch. Mikrobiol. 71:283–294

Sheu, D.S., Wang, Y.T. and Lee, C.Y. 2000. Rapid detection of polyhydroxyalkanoate accumulating bacteria isolation from the environment by colony PCR. Mircobiology 146: 2019-2025.

Siefert, E., Irgens, R. L. and Pfennig, N. 1978. Phototrophic purple and green bacteria in a sewage treatment plant. Appl. Environ. Microbiol. 35:38-44
Sockett, R. E., Donohue, T. J., Varga, A. R., and Kaplan, S. 1989. Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. J. Bacteriol. 171:436-446

Spiekermann, P., Rehm, B.H., Kalscheuer, R., Baumeister, D., and Steinbuchel, A. 1999. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol.171:73–80

Stackbrandt, E., Murray, R. G. E., and Trüper, H. G.1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38:321-325

Takahashi, M., and Ichimura, S. 1970. Photosynthetic properties and growth of photosynthetic bacteria in lakes. Limnol. Oceanogr. 15:929-944

Van Niel C.B. 1944. The culture, general physiology,morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev. 1944.8: 1–118
Ward, P. G., Roo, G. de. and O'Connor, K. E. 2005. Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol.71: 2046 – 2052

Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703

Widdell, F., Schnell, S., Ehrenreich, A., Assmus, B.,and Schink, B. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria.Nature.362:834-836

Wong, D. K., Collins, W. J., Harmer, A., Lilburn, T. G., and Beatty, J. T. 1996. Directed mutagenesis of the Rhodobacter capsulatus puhA gene and orf 214: pleiotropic effects on photosynthetic reaction center and light-harvesting 1 complexes. J. Bacteriol. 178: 2334-2342

Yang, M.K., Lin, Y.C., Shen, C.H. 2006. Identification of two gene loci involved in poly-beta-hydroxybutyrate production in Rhodobacter sphaeroides FJ1. J. Microbiol. Immunol. Infect.39:18-27

Yasuhiro O., Wanders W.,Huisman, L. A., Meijer, W. G., Gottschal, J. C. and Forney, L. J. 2002. Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Appl. Environ. Microbiol. 68:3467-3477.

Young, S. Do, Thomas, M. S.,James, A. Zahn, Eric S. Boyd, Arlene de la Mora, and Alan A. DiSpirito.2003. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation. Appl. Environ. Microbiol.69:1710-1720
Zhang, D., Yang, H., Huang, Z., Zhang, W., Liu, S. J. 2002, Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 53:1111-1114
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top